解:(1)因为$\triangle ABC$与$\triangle ADE$关于直线MN对称,所以$BC = DE = 5,$又$FC = 2,$则$BF=BC - FC=5 - 2 = 3;$
(2)因为$\triangle ABC$与$\triangle ADE$关于直线MN对称,所以$\angle BAC=\angle DAE = 75^{\circ},$又$\angle EAC = 56^{\circ},$所以$\angle CAD=\angle DAE-\angle EAC=75^{\circ}-56^{\circ}=19^{\circ}。$