解:分以下三种情况讨论:
① 如图①,当点$P$在线段$OA$上时,
在$\triangle QOC$中,$∵OC = OQ,$$∴∠Q = ∠C。$
在$\triangle OPQ$中,$∵QP = QO,$$∴∠QOP = ∠QPO。$
$∵∠AOC = 30°,$$∴∠QPO = ∠C+∠AOC = ∠C + 30°。$
又$∵∠QOP+∠QPO+∠Q = 180°,$即$(∠C + 30°)+(∠C + 30°)+∠C = 180°,$
$∴∠C = 40°,$即$∠OCP = 40°。$
② 如图②,当点$P$在线段$OA$的延长线上时,
在$\triangle QOC$中,$∵OC = OQ,$$∴∠OQP = ∠OCQ=\frac{1}{2}(180°-∠QOC)。$
在$\triangle OPQ$中,$∵QP = QO,$$∴∠OPQ = ∠QOP。$
又$∵∠OPQ+∠QOP+∠OQP = 180°,$$∠QOP = ∠QOC+∠AOC = ∠QOC + 30°,$
$∴(∠QOC + 30°)+(∠QOC + 30°)+\frac{1}{2}(180°-∠QOC)=180°,$
$∴∠QOC = 20°,$$∴∠OQP = 80°,$$∴∠OCP = ∠QOC+∠OQP = 100°。$
③ 如图③,当点$P$在线段$OA$的反向延长线上时,
在$\triangle QOC$中,$∵OC = OQ,$$∴∠OCP = ∠OQC。$
在$\triangle OPQ$中,$∵QO = QP,$$∴∠QPO = ∠QOP=\frac{1}{2}∠OQC=\frac{1}{2}∠OCP。$
$∵∠AOC = 30°,$$∴∠QPO+∠OCP = 30°,$即$\frac{1}{2}∠OCP+∠OCP = 30°,$
$∴∠OCP = 20°。$
综上所述,$∠OCP$的度数为$40°$或$100°$或$20°。$