解:连接$OA.$
∵$CD = 10,$
∴$OA=OC = OD = 5$
.∵$OM:OC = 3:5,$
∴$OM = 3,$
∴在$Rt\triangle AMO$中,$AM=\sqrt {OA^2-OM^2}=\sqrt {5^2-3^2} = 4.$
如图①,当点$M$在半径$OD$上时,$CM=OC + OM = 5 + 3 = 8.$
∴在$Rt\triangle AMC$中,$AC=\sqrt {AM^2+CM^2}=\sqrt {4^2+8^2} = 4\sqrt {5}.$
如图②,当点$M$在半径$OC$上时,$CM=OC - OM = 5 - 3 = 2.$
∴在$Rt\triangle AMC$中,$AC=\sqrt {AM^2+CM^2}=\sqrt {4^2+2^2} = 2\sqrt {5}.$
综上所述,弦$AC$的长为$4\sqrt {5}$或$2\sqrt {5}$