解:$(1)$因为数据$x_{1},x_{2},....,x_{6}$的平均数为$1,$
所以$x_{1} + x_{2}+.... + x_{6}=1×6 = 6。$
$ $又因为这组数据的方差为$\frac {5}{3},$
根据方差公式$s^2=\frac {1}{n}[(x_{1}-\overline {x})^2+(x_{2}-\overline {x})^2+....+(x_{n}-\overline {x})^2]($这里$n = 6,$$\overline {x}=1),$
可得$(x_{1} - 1)^2+(x_{2} - 1)^2+....+(x_{6} - 1)^2=\frac {5}{3}×6 = 10。$
$ $将$(x_{1} - 1)^2+(x_{2} - 1)^2+...+(x_{6} - 1)^2$展开:
$ \begin {aligned}&(x_{1} - 1)^2+(x_{2} - 1)^2+....+(x_{6} - 1)^2\\=&x_{1}^2-2x_{1} + 1+x_{2}^2-2x_{2} + 1+....+x_{6}^2-2x_{6} + 1\\=&x_{1}^2+x_{2}^2+....+x_{6}^2-2(x_{1} + x_{2}+....+ x_{6})+6\end {aligned}$
$ $所以$x_{1}^2+x_{2}^2+....+x_{6}^2-2×6 + 6=10,$即$x_{1}^2+x_{2}^2+....+x_{6}^2=16。$
$(2)$因为数据$x_{1},x_{2},....,x_{7}$的平均数为$1,$
所以$x_{1} + x_{2}+....+ x_{7}=1×7 = 7。$
$ $又因为$x_{1} + x_{2}+....+ x_{6}=6,$
所以$6 + x_{7}=7,$
解得$x_{7}=1。$
$ $这$7$个数据的方差为:
$ \begin {aligned}s^2&=\frac {1}{7}[(x_{1} - 1)^2+(x_{2} - 1)^2+·s+(x_{6} - 1)^2+(x_{7} - 1)^2]\\&=\frac {1}{7}[10+(1 - 1)^2]\\&=\frac {10}{7}\end {aligned}$