电子课本网 第71页

第71页

信息发布者:
$\begin{cases}x = 4 \\ y = 1\end{cases}$
解:$\begin{cases}x + 2y = 9,① \\ y = 3x + 1,②\end{cases}$
将②代入①,得$x + 6x + 2 = 9,$
$7x=9 - 2,$
$7x = 7,$
解得$x = 1。$
将$x = 1$代入①,得$1 + 2y = 9,$
$2y=9 - 1,$
$2y = 8,$
解得$y = 4。$
所以原方程组的解为$\begin{cases}x = 1 \\ y = 4\end{cases}。$
解:$\begin{cases}x + 2y = 3,① \\ 3x - 4y = 4,②\end{cases}$
①$\times2 +$②,得$2x + 4y + 3x - 4y = 6 + 4,$
$5x = 10,$
解得$x = 2。$
将$x = 2$代入①,得$2 + 2y = 3,$
$2y=3 - 2,$
$2y = 1,$
解得$y = \frac{1}{2}。$
所以原方程组的解为$\begin{cases}x = 2 \\ y = \frac{1}{2}\end{cases}。$
解:方程组整理,得$\begin{cases}3x - 5y = 3,① \\ 3x - 2y = 6,②\end{cases}$
②$-$①,得$3x - 2y -(3x - 5y)=6 - 3,$
$3x - 2y - 3x + 5y = 3,$
$3y = 3,$
解得$y = 1。$
将$y = 1$代入①,得$3x - 5 = 3,$
$3x=3 + 5,$
$3x = 8,$
解得$x = \frac{8}{3}。$
所以原方程组的解为$\begin{cases}x = \frac{8}{3} \\ y = 1\end{cases}。$
解:$\begin{cases}x + y + z = 6,① \\ x + z = 4,② \\ x = 3,③\end{cases}$
把③代入①②,得$\begin{cases}3 + y + z = 6 \\ 3 + z = 4\end{cases},$
由$3 + z = 4,$得$z = 4 - 3 = 1。$
把$z = 1$代入$3 + y + z = 6,$得$3 + y + 1 = 6,$
$y=6 - 3 - 1,$
$y = 2。$
所以原方程组的解为$\begin{cases}x = 3 \\ y = 2 \\ z = 1\end{cases}。$
解:由题意,得$\begin{cases}-2 - 3b = 1 \\ a - 1 = 3\end{cases},$
解$-2 - 3b = 1,$
$-3b=1 + 2,$
$-3b = 3,$
$b = -1。$
解$a - 1 = 3,$得$a = 3 + 1 = 4。$
所以原式$=(a + 3b)^2 - 10=[4 + 3\times(-1)]^2 - 10$
$=(4 - 3)^2 - 10$
$=1 - 10$
$=-9。$
解:
(1)$\begin{cases}x = m + 2,① \\ y = \frac{5 - m}{2},②\end{cases}$
由①,得$m = x - 2,$代入②,得$y = \frac{5-(x - 2)}{2}=\frac{7 - x}{2}。$
(2)当$x = 1$时,$y = \frac{7 - 1}{2}=3;$当$x = 3$时,$y = \frac{7 - 3}{2}=2;$
当$x = 5$时,$y = \frac{7 - 5}{2}=1;$当$x = 7$时,$y = \frac{7 - 7}{2}=0。$
(3)方程组整理,得$x + 2y = m + 2 + 5 - m = 7,$则原式$=(-2)^{x + 2y}=(-2)^7=-128。$
解:
(1)因为$x + 2y - 6 = 0,$所以$y = 3 - \frac{1}{2}x。$
又因为$x,$$y$均为正整数,
所以当$x = 2$时,$y = 3 - \frac{1}{2}\times2 = 2;$当$x = 4$时,$y = 3 - \frac{1}{2}\times4 = 1。$
所以方程$x + 2y - 6 = 0$的所有正整数解为$\begin{cases}x = 2 \\ y = 2\end{cases},$$\begin{cases}x = 4 \\ y = 1\end{cases}。$
(2)由题意,得$\begin{cases}x + y = 0 \\ x + 2y - 6 = 0\end{cases},$
由$x + y = 0$得$x = -y,$代入$x + 2y - 6 = 0,$得$-y + 2y - 6 = 0,$
$y - 6 = 0,$
解得$y = 6,$则$x = -6。$
把$\begin{cases}x = -6 \\ y = 6\end{cases}$代入$x - 2y + mx + 5 = 0,$得$-6 - 2\times6 - 6m + 5 = 0,$
$-6 - 12 - 6m + 5 = 0,$
$-13 - 6m = 0,$
$6m=-13,$
解得$m = -\frac{13}{6}。$
(3)由$x - 2y + mx + 5 = 0,$得$(m + 1)x = 2y - 5,$而无论$m$取何值,该方程总有一个固定的解,所以有$\begin{cases}x = 0 \\ 2y - 5 = 0\end{cases},$
解$2y - 5 = 0,$得$2y = 5,$$y = \frac{5}{2}。$
所以固定的解为$\begin{cases}x = 0 \\ y = \frac{5}{2}\end{cases}。$