电子课本网 第99页

第99页

信息发布者:
$m\geqslant - 1$
$y = 12 - 2x$
$3\lt x\lt 6$
6
解:$\begin{cases}5x + 2\geqslant 3(x - 1),①\\1-\frac{2x + 5}{3}\gt x - 2,②\end{cases}$
解不等式①:
$\begin{aligned}5x + 2&\geqslant 3(x - 1)\\5x + 2&\geqslant 3x-3\\5x-3x&\geqslant -3 - 2\\2x&\geqslant -5\\x&\geqslant-\frac{5}{2}\end{aligned}$
解不等式②:
$\begin{aligned}1-\frac{2x + 5}{3}&\gt x - 2\\3-(2x + 5)&\gt 3(x - 2)\\3-2x-5&\gt 3x-6\\-2x-3x&\gt -6 + 5 - 3\\-5x&\gt -4\\x&\lt\frac{4}{5}\end{aligned}$
所以原不等式组的解集为$-\frac{5}{2}\leqslant x\lt\frac{4}{5}。$
解:$\begin{cases}2(x - 1)\geqslant x + 1,①\\x - 2\gt\frac{1}{3}(2x - 1),②\end{cases}$
解不等式①:
$\begin{aligned}2(x - 1)&\geqslant x + 1\\2x-2&\geqslant x + 1\\2x-x&\geqslant 1 + 2\\x&\geqslant 3\end{aligned}$
解不等式②:
$\begin{aligned}x - 2&\gt\frac{1}{3}(2x - 1)\\3(x - 2)&\gt 2x - 1\\3x-6&\gt 2x - 1\\3x-2x&\gt -1 + 6\\x&\gt 5\end{aligned}$
所以原不等式组的解集为$x\gt 5。$
解:$\begin{cases}3x-(x - 2)\geqslant 6,①\\x + 1\gt\frac{4x - 1}{3},②\end{cases}$
解不等式①:
$\begin{aligned}3x-(x - 2)&\geqslant 6\\3x-x + 2&\geqslant 6\\2x&\geqslant 6 - 2\\2x&\geqslant 4\\x&\geqslant 2\end{aligned}$
解不等式②:
$\begin{aligned}x + 1&\gt\frac{4x - 1}{3}\\3(x + 1)&\gt 4x - 1\\3x+3&\gt 4x - 1\\3x-4x&\gt -1 - 3\\-x&\gt -4\\x&\lt 4\end{aligned}$
所以原不等式组的解集为$2\leqslant x\lt 4。$
解:$\begin{cases}2x - 6\leqslant 0,①\\x\lt\frac{4x - 1}{2},②\end{cases}$
解不等式①:
$\begin{aligned}2x - 6&\leqslant 0\\2x&\leqslant 6\\x&\leqslant 3\end{aligned}$
解不等式②:
$\begin{aligned}x&\lt\frac{4x - 1}{2}\\2x&\lt 4x - 1\\2x-4x&\lt -1\\-2x&\lt -1\\x&\gt\frac{1}{2}\end{aligned}$
所以原不等式组的解集为$\frac{1}{2}\lt x\leqslant 3,$它的所有整数解为$1,$$2,$$3,$整数解的和为$1 + 2+3 = 6。$
解:
(1)$\begin{cases}2x + y = 5a,①\\x - 3y=-a + 7,②\end{cases}$
$①\times3 + ②$得:
$\begin{aligned}3(2x + y)+(x - 3y)&=3\times5a+(-a + 7)\\6x+3y+x - 3y&=15a - a + 7\\7x&=14a + 7\\x&=2a + 1\end{aligned}$
将$x = 2a + 1$代入①得:
$\begin{aligned}2(2a + 1)+y&=5a\\4a+2 + y&=5a\\y&=a - 2\end{aligned}$
所以原方程组的解为$\begin{cases}x = 2a + 1\\y = a - 2\end{cases}。$
(2)由题意得$\begin{cases}2a + 1\geqslant 0\\a - 2\lt 0\end{cases}$
解不等式$2a + 1\geqslant 0$得:
$\begin{aligned}2a&\geqslant -1\\a&\geqslant-\frac{1}{2}\end{aligned}$
解不等式$a - 2\lt 0$得:$a\lt 2$
所以字母$a$的取值范围是$-\frac{1}{2}\leqslant a\lt 2。$
2或$-1$