电子课本网 第24页

第24页

信息发布者:
解:因为$\angle ACB = 90^{\circ},$$AB = 10\mathrm{cm},$$BC = 8\mathrm{cm},$所以$AC = \sqrt{AB^{2}-BC^{2}} = 6\mathrm{cm},$所以$S_{\triangle ABC} = \frac{1}{2}AC\cdot BC = 24\mathrm{cm}^{2}。$由题意,得$AP = 2t\mathrm{cm},$$CQ = t\mathrm{cm}。$因为$8\div1 = 8(\mathrm{s}),$所以$0\leq t\leq8。$分类讨论如下:
① 当$0\leq t\leq3$时,点$P$在线段$AC$上,则$CP = AC - AP = (6 - 2t)\mathrm{cm},$所以$S_{\triangle PQC} = \frac{1}{2}CP\cdot CQ = (-t^{2} + 3t)\mathrm{cm}^{2}。$当$S_{\triangle PQC} = \frac{1}{6}S_{\triangle ABC}$时,$-t^{2} + 3t = \frac{1}{6}\times24。$整理,得$t^{2} - 3t + 4 = 0,$该方程无解;
② 当$3\lt t\leq8$时,点$P$在线段$AC$的延长线上,则$CP = AP - AC = (2t - 6)\mathrm{cm},$所以$S_{\triangle PQC} = \frac{1}{2}CP\cdot CQ = (t^{2} - 3t)\mathrm{cm}^{2}。$当$S_{\triangle PQC} = \frac{1}{6}S_{\triangle ABC}$时,$t^{2} - 3t = \frac{1}{6}\times24。$整理,得$t^{2} - 3t - 4 = 0,$解得$t_{1} = 4,$$t_{2} = -1$(不合题意,舍去)。
综上所述,存在某一时刻,使得$\triangle PQC$的面积是$\triangle ABC$面积的$\frac{1}{6},$此时$t$的值为$4。$
D
$432\sqrt{2}$
8
解:过点$P$作$PG\perp OC$于点$G,$则$\angle OGP = 90^{\circ}。$因为$\angle AOC = 90^{\circ},$$OP$平分$\angle AOC,$所以$\angle POG = \frac{1}{2}\angle AOC = 45^{\circ},$所以$\triangle OPG$是等腰直角三角形,所以$OG = PG。$由题意,得$OP = \sqrt{2}t,$$OQ = 2t,$所以$Q(2t,0)。$因为$OG^{2} + PG^{2} = OP^{2},$所以$OG = PG = t,$所以$P(t,t)。$因为$Q(2t,0),$$B(6,2),$所以$PB^{2} = (6 - t)^{2} + (2 - t)^{2} = 2t^{2} - 16t + 40,$$QB^{2} = (6 - 2t)^{2} + 2^{2} = 4t^{2} - 24t + 40,$$PQ^{2} = (2t - t)^{2} + (0 - t)^{2} = 2t^{2}。$分类讨论如下:
① 若$\angle PQB = 90^{\circ},$则有$PQ^{2} + QB^{2} = PB^{2},$即$2t^{2} + 4t^{2} - 24t + 40 = 2t^{2} - 16t + 40。$整理,得$t^{2} - 2t = 0,$解得$t_{1} = 2,$$t_{2} = 0$(不合题意,舍去);
② 若$\angle PBQ = 90^{\circ},$则有$PB^{2} + QB^{2} = PQ^{2},$即$2t^{2} - 16t + 40 + 4t^{2} - 24t + 40 = 2t^{2}。$整理,得$t^{2} - 10t + 20 = 0,$解得$t_{1} = 5 + \sqrt{5},$$t_{2} = 5 - \sqrt{5};$
③ 若$\angle QPB = 90^{\circ},$则有$PQ^{2} + PB^{2} = QB^{2},$即$2t^{2} + 2t^{2} - 16t + 40 = 4t^{2} - 24t + 40。$整理,得$8t = 0,$解得$t = 0$(不合题意,舍去)。
综上所述,当$t = 2$或$5 + \sqrt{5}$或$5 - \sqrt{5}$时,$\triangle PQB$为直角三角形。