解: (1)连接$OC。$因为$C$是优弧$AB$的中点,所以$\overset{\frown}{AC}=\overset{\frown}{BC},$所以$\angle COD=\angle COE。$因为$OA = OB,$$AD = BE,$所以$OA - AD = OB - BE,$即$OD = OE。$在$\triangle OCD$和$\triangle OCE$中,$\begin{cases}OC = OC\\\angle COD=\angle COE\\OD = OE\end{cases},$所以$\triangle OCD\cong\triangle OCE(SAS),$所以$CD = CE。$
(2)连接$OM,$$ON。$因为$\triangle OCD\cong\triangle OCE,$所以$\angle OCD=\angle OCE,$$\angle ODC=\angle OEC。$因为$OC = OM = ON,$所以$\angle OCD=\angle OMD,$$\angle OCE=\angle ONE,$所以$\angle OMD=\angle ONE。$因为$\angle ODC=\angle OMD+\angle MOD,$$\angle OEC=\angle ONE+\angle NOE,$所以$\angle MOD=\angle NOE,$所以$\overset{\frown}{AM}=\overset{\frown}{BN}。$