电子课本网 第37页

第37页

信息发布者:
45°
3
52°
C
3
解: (1)连接$OC。$因为$C$是优弧$AB$的中点,所以$\overset{\frown}{AC}=\overset{\frown}{BC},$所以$\angle COD=\angle COE。$因为$OA = OB,$$AD = BE,$所以$OA - AD = OB - BE,$即$OD = OE。$在$\triangle OCD$和$\triangle OCE$中,$\begin{cases}OC = OC\\\angle COD=\angle COE\\OD = OE\end{cases},$所以$\triangle OCD\cong\triangle OCE(SAS),$所以$CD = CE。$
(2)连接$OM,$$ON。$因为$\triangle OCD\cong\triangle OCE,$所以$\angle OCD=\angle OCE,$$\angle ODC=\angle OEC。$因为$OC = OM = ON,$所以$\angle OCD=\angle OMD,$$\angle OCE=\angle ONE,$所以$\angle OMD=\angle ONE。$因为$\angle ODC=\angle OMD+\angle MOD,$$\angle OEC=\angle ONE+\angle NOE,$所以$\angle MOD=\angle NOE,$所以$\overset{\frown}{AM}=\overset{\frown}{BN}。$
解: (1)四边形$OACB$是菱形。理由如下:
连接$OC。$因为$C$是$\overset{\frown}{AB}$的中点,所以$\overset{\frown}{AC}=\overset{\frown}{BC},$所以$\angle AOC=\angle BOC=\frac{1}{2}\angle AOB。$因为$\angle AOB = 120^{\circ},$所以$\angle AOC=\angle BOC = 60^{\circ}。$又因为$OA = OC = OB,$所以$\triangle AOC$和$\triangle BOC$都是等边三角形,所以$AC = OA = OB = BC,$所以四边形$OACB$是菱形。
(2)因为$AC = OA,$$AP = OA,$所以$AC = AP,$所以$\angle P=\angle ACP,$所以$\angle OAC=\angle ACP+\angle P = 2\angle ACP。$因为$\triangle AOC$是等边三角形,所以$\angle ACO=\angle OAC = 60^{\circ},$所以$2\angle ACP = 60^{\circ},$所以$\angle P=\angle ACP = 30^{\circ},$所以$\angle OCP=\angle ACO+\angle ACP = 90^{\circ}。$因为$\odot O$的半径是$2,$所以$OC = 2,$所以$OP = 2OC = 4,$所以$PC=\sqrt{OP^{2}-OC^{2}} = 2\sqrt{3}。$