解:如图,延长$AE$交$\odot O$于点$H,$连接$OC,$$OH,$$BH,$过点$O$作$ON\perp BH$于点$N,$交$CD$于点$M,$则$\angle MNH = 90^{\circ},$$HN = BN。$
因为$AE\perp CD,$$BF\perp CD,$所以$\angle HEF = \angle BFE = 90^{\circ}。$
因为$OA = OH,$$OB = OH,$所以$\angle OHA = \angle OAH,$$\angle OHB = \angle OBH。$
因为$\angle OAH+\angle OHA+\angle OHB+\angle OBH = 180^{\circ},$所以$2(\angle OHA+\angle OH B)=180^{\circ},$所以$\angle OHA+\angle OH B = 90^{\circ},$所以$\angle AHB = 90^{\circ},$所以四边形$HEMN$和四边形$HEFB$都是矩形,所以$MN = EH = BF,$$EF// HB,$所以$OM\perp CD,$所以$\angle OMC = 90^{\circ},$$CM=\frac{1}{2}CD。$
因为$CD = 16,$所以$CM = 8。$
因为$\odot O$的半径为$10,$所以$OC = 10,$所以$OM=\sqrt{OC^{2}-CM^{2}} = 6。$
因为$OA = OB,$所以$ON$为$\triangle ABH$的中位线,所以$AH = 2ON,$所以$AE + EH = 2(OM + MN),$所以$AE + BF = 2(OM + BF),$所以$AE - BF = 2OM = 12。$