电子课本网 第41页

第41页

信息发布者:
C
(3,-1)
$\frac{25}{2}$
$\frac{4\pi}{3}$
D
(7,4)或(1,4)或(6,5)
解: 如图,作△ABC的外接圆⊙O,连接OA,OB,OC,延长AO交⊙O于点H,过点O作OE⊥BC于点E,OF⊥AD于点F,则BE = CE = $\frac{1}{2}BC,$∠OED = ∠OFA = ∠OFD = 90°. 因为AD是△ABC的高,所以AD⊥BC,所以∠EDF = 90°,所以四边形OEDF是矩形,所以OE = DF,OF = DE. 因为BD = 3,CD = 1,所以BC = BD + CD = 4,所以BE = CE = 2. 因为OA = OB = OC,所以∠OAB = ∠OBA,∠OAC = ∠OCA,所以∠BOH = ∠OAB + ∠OBA = 2∠OAB,∠COH = ∠OAC + ∠OCA = 2∠OAC,所以∠BOC = ∠BOH + ∠COH = 2(∠OAB + ∠OAC) = 2∠BAC. 因为∠BAC = 45°,所以∠BOC = 90°. 设OA = OB = OC = x,则BC = $\sqrt{OB^{2}+OC^{2}}=\sqrt{2}x,$所以$\sqrt{2}x = 4,$解得x = $2\sqrt{2},$所以OA = OB = OC = $2\sqrt{2},$所以DF = OE = $\sqrt{OB^{2}-BE^{2}} = 2,$OF = DE = CE - CD = 1,所以AF = $\sqrt{OA^{2}-OF^{2}}=\sqrt{7},$所以AD = AF + DF = $\sqrt{7}+2.$
解: (1) △ABC是等腰三角形. 证明如下:过点D作DE⊥AB于点E,DF⊥AC于点F. 因为AD是△ABC的角平分线,所以DE = DF. 因为AD是△ABC的中线,所以BD = CD. 在Rt△BDE和Rt△CDF中,$\begin{cases}BD = CD\\DE = DF\end{cases},$所以Rt△BDE≌Rt△CDF,所以∠B = ∠C,所以△ABC是等腰三角形.
(2) 直线AD经过△ABC的外接圆的圆心. 证明如下:因为△ABC是等腰三角形,AD是中线,所以AD⊥BC,所以AD垂直平分BC,所以直线AD经过△ABC的外接圆的圆心.