(1) 证明:连接$AF.$因为$\angle FEB = 90^{\circ},$所以$EF\perp AB.$因为$AE = EB,$所以$EF$垂直平分$AB,$所以$FB = AF,$$\angle FEA = 90^{\circ},$所以$AF$为$\odot O$的直径,所以$AF = DE,$所以$FB = DE.$因为$DE$为$\odot O$的直径,所以$\angle EAD = 90^{\circ}.$在$Rt\triangle EFB$和$Rt\triangle ADE$中,$\begin{cases}FB = DE \\ EB = AE\end{cases},$所以$Rt\triangle EFB\cong Rt\triangle ADE.$
(2) 解:过点$A$作$AG\perp DE$于点$G,$过点$E$作$EH\perp BF$于点$H.$因为$Rt\triangle EFB\cong Rt\triangle ADE,$所以$EH = AG,$$\angle B = \angle AED,$所以$DE// BC.$因为$\angle EAD = \angle FEB = 90^{\circ},$所以$EF// AC,$所以四边形$FCDE$是平行四边形,所以$CF = DE = 4,$$S_{四边形FCDE}=CF\cdot EH,$所以当四边形$FCDE$的面积最大时,$EH$的长最大,即$AG$的长最大.由题图可知,当$A$为$\overset{\frown}{DE}$的中点时,$AG$的长最大,且最大值为$\odot O$的半径,即为$\frac{1}{2}\times4 = 2,$所以四边形$FCDE$的最大面积为$4\times2 = 8.$