电子课本网 第45页

第45页

信息发布者:
$5$
$2\sqrt{2}$
$2\sqrt{3}$
B
$2$
(1) 证明:因为$AB$为半圆的直径,所以$\angle AEB = 90^{\circ},$所以$AE\perp BC.$因为$AB = AC,$所以$CE = BE.$因为$EF = AE,$所以四边形$ABFC$是平行四边形.又$AB = AC,$所以四边形$ABFC$是菱形.
(2) 解:连接$BD.$由
(1),得$CE = BE = 2,$所以$BC = BE + CE = 4.$因为$AB$为半圆的直径,所以$\angle ADB = 90^{\circ},$所以$BD\perp AC,$$\angle BDC = 180^{\circ}-\angle ADB = 90^{\circ}.$设$CD = x.$因为$AD = 7,$所以$AB = AC = AD + CD = 7 + x.$因为$BD^{2}+AD^{2}=AB^{2},$$BD^{2}+CD^{2}=BC^{2},$所以$AB^{2}-AD^{2}=BC^{2}-CD^{2},$即$(7 + x)^{2}-7^{2}=4^{2}-x^{2},$解得$x_{1}=1,$$x_{2}=-8$(不合题意,舍去),所以$AB = AC = 8,$所以半圆的面积为$\frac{1}{2}\pi\times(8\div2)^{2}=8\pi.$因为$BD = \sqrt{AB^{2}-AD^{2}}=\sqrt{15},$所以$S_{菱形ABFC}=AC\cdot BD = 8\sqrt{15}.$故菱形$ABFC$的面积为$8\sqrt{15}.$
(1) 证明:连接$AF.$因为$\angle FEB = 90^{\circ},$所以$EF\perp AB.$因为$AE = EB,$所以$EF$垂直平分$AB,$所以$FB = AF,$$\angle FEA = 90^{\circ},$所以$AF$为$\odot O$的直径,所以$AF = DE,$所以$FB = DE.$因为$DE$为$\odot O$的直径,所以$\angle EAD = 90^{\circ}.$在$Rt\triangle EFB$和$Rt\triangle ADE$中,$\begin{cases}FB = DE \\ EB = AE\end{cases},$所以$Rt\triangle EFB\cong Rt\triangle ADE.$
(2) 解:过点$A$作$AG\perp DE$于点$G,$过点$E$作$EH\perp BF$于点$H.$因为$Rt\triangle EFB\cong Rt\triangle ADE,$所以$EH = AG,$$\angle B = \angle AED,$所以$DE// BC.$因为$\angle EAD = \angle FEB = 90^{\circ},$所以$EF// AC,$所以四边形$FCDE$是平行四边形,所以$CF = DE = 4,$$S_{四边形FCDE}=CF\cdot EH,$所以当四边形$FCDE$的面积最大时,$EH$的长最大,即$AG$的长最大.由题图可知,当$A$为$\overset{\frown}{DE}$的中点时,$AG$的长最大,且最大值为$\odot O$的半径,即为$\frac{1}{2}\times4 = 2,$所以四边形$FCDE$的最大面积为$4\times2 = 8.$