证明:因为四边形$ABCD$是正方形,所以$BA = BC,$$\angle ABC = 90^{\circ},$所以$\angle ABP + \angle CBP = 90^{\circ}。$
因为$BE \perp PB,$所以$\angle PBE = 90^{\circ},$所以$\angle ABP + \angle ABE = 90^{\circ},$所以$\angle ABE = \angle CBP。$
因为四边形$ABCP$是圆的内接四边形,所以$\angle BAP + \angle BCP = 180^{\circ}。$
因为$\angle BAP + \angle BAE = 180^{\circ},$所以$\angle BAE = \angle BCP。$
在$\triangle ABE$和$\triangle CBP$中,
$\begin{cases}\angle ABE = \angle CBP \\BA = BC \\\angle BAE = \angle BCP\end{cases}$
所以$\triangle ABE \cong \triangle CBP,$所以$EA = PC,$$BE = BP,$所以$PA + PC = PA + EA = PE=\sqrt{BP^{2}+BE^{2}}=\sqrt{2}BE。$