电子课本网 第49页

第49页

信息发布者:
$4$
$3$或$5$
$0 < m < \frac{13}{2}$
B
$1$
$1 < d < 3$
(1)证明:因为$CA$平分$\angle DCB,$所以$\angle ACD=\angle ACB,$所以$\overset{\frown}{AD}=\overset{\frown}{AB},$所以$AD = AB.$因为$BE = AD,$所以$AB = BE.$因为$\angle ADC = 90^{\circ},$所以$AC$是$\odot O$的直径,所以$\angle ABC = 90^{\circ},$所以$\angle ABE = 180^{\circ}-\angle ABC = 90^{\circ},$所以$\triangle ABE$是等腰直角三角形.
(2)证明:设$\odot O$的半径为$r,$过点$O$作$OH\perp EF$于点$H,$则$\angle OHE = 90^{\circ}.$因为$CA$平分$\angle DCB,$所以$\angle DCB = 2\angle ACE.$因为四边形$ABCD$内接于$\odot O,$所以$\angle DAB+\angle DCB = 180^{\circ}.$因为$\angle DAB+\angle BAE = 180^{\circ},$所以$\angle BAE=\angle DCB,$所以$\angle BAE = 2\angle ACE.$因为$\angle ABC = 90^{\circ},$所以$\angle AEB=\angle ABC-\angle BAE = 90^{\circ}-2\angle ACE.$因为$\angle ACE\geqslant30^{\circ},$所以$\angle AEB\leqslant30^{\circ}\leqslant\angle ACE,$所以在$\triangle AEC$中,$AE\geqslant AC = 2r.$因为$\angle ADC = 90^{\circ},$所以$\angle EAC=\angle ADC+\angle ACD>90^{\circ},$所以在$\triangle AEO$中,$OE>AE\geqslant2r.$因为$\angle OEF = 30^{\circ},$所以$OE = 2OH,$所以$2OH>2r,$所以$OH>r,$所以直线$EF$与$\odot O$相离.
解:直线$AB$与$\odot O$相离.理由如下:如图,延长$BA$至点$D,$使得$DB = OA,$连接$OD.$在$\triangle OAC$和$\triangle DBO$中,$\begin{cases}AC = BO\\\angle OAC=\angle DBO\\OA = DB\end{cases},$所以$\triangle OAC\cong\triangle DBO,$所以$OC = DO,$$\angle COA=\angle ODB.$因为$OA\perp OC,$所以$\angle COA = 90^{\circ},$所以$\angle ODB = 90^{\circ},$所以$DO\perp BD.$设$\odot O$的半径为$r.$因为$\odot O$与$BC$相切($C$不是切点),所以$OC>r,$所以$DO>r,$所以直线$AB$与$\odot O$相离.