电子课本网 第53页

第53页

信息发布者:
B
135°
$2\sqrt{2}$
A
2
解:因为$AB = AC,$$AD$是$\triangle ABC$的中线,$BC = 8,$所以$BD = CD=\frac{1}{2}BC = 4,$$\angle BAD = \angle CAD,$$AD\perp BC,$所以$\angle ADB = 90^{\circ}$且$P,$$Q$两点都在直线$AD$上,所以$\triangle ABC$的内切圆$\odot Q$与$BC$相切于点$D。$因为$AD = 3,$所以$AC = AB=\sqrt{AD^{2}+BD^{2}} = 5。$如图,连接$PA,$$PB,$设$PA = PB = R,$$QD = r,$则$PD = PA - AD = R - 3。$因为$\angle PDB = 180^{\circ}-\angle ADB = 90^{\circ},$所以$PD^{2}+BD^{2}=PB^{2},$即$(R - 3)^{2}+4^{2}=R^{2},$解得$R=\frac{25}{6},$所以$PD=\frac{7}{6}。$因为$S_{\triangle ABC}=\frac{1}{2}BC\cdot AD=\frac{1}{2}(AB + AC + BC)\cdot r,$所以$\frac{1}{2}\times8\times3=\frac{1}{2}\times(5 + 5 + 8)\times r,$解得$r=\frac{4}{3},$所以$QD=\frac{4}{3},$所以$PQ = PD + QD=\frac{5}{2}。$故点$P$与点$Q$之间的距离为$\frac{5}{2}。$
(1) 证明:过点$D$作$DN\perp AB$于点$N。$因为$DE\perp BC,$$DF\perp AC,$所以$\angle DEC = \angle DFC = 90^{\circ}。$又$\angle C = 90^{\circ},$所以四边形$CFDE$是矩形。因为$AD$平分$\angle BAC,$所以$DF = DN。$因为$BD$平分$\angle ABC,$所以$DE = DN,$所以$DF = DE,$所以四边形$CFDE$是正方形。
(2) 解:因为$\angle C = 90^{\circ},$$AC = 3,$$BC = 4,$所以$AB = \sqrt{AC^{2}+BC^{2}} = 5。$设$\triangle ABC$的内切圆的半径为$r,$则$S_{\triangle ABC}=\frac{1}{2}AC\cdot BC=\frac{1}{2}(AC + BC + AB)\cdot r,$即$\frac{1}{2}\times3\times4=\frac{1}{2}\times(3 + 4 + 5)\times r,$解得$r = 1。$故$\triangle ABC$的内切圆的半径为$1。$