电子课本网 第57页

第57页

信息发布者:
$\sqrt{5}-1\leqslant AF\leqslant2$
$5\sqrt{10}$
$10\sqrt{2}$
$10\sqrt{2}$
解: 图④为用圆形硬纸板盖住三个正方形时直径最小的放置方法,其中$H$为$CD$的中点.因为$HG$垂直平分$NF,$所以点$O$在$HG$上,所以$\angle OGN = 90^{\circ}.$连接$OB,$$ON,$延长$GH$交$AB$于点$P,$则$PG\perp AB,$所以$\angle BPO = 90^{\circ},$$BP=\frac{1}{2}AB=\frac{1}{2}\times5=\frac{5}{2}$($cm$).设$OG = x\ cm.$因为$PG = 5\times2 = 10$($cm$),所以$OP = PG - OG=(10 - x)\ cm.$因为$OP^{2}+BP^{2}=OB^{2},$$OG^{2}+NG^{2}=ON^{2},$且$OB = ON,$所以$OP^{2}+BP^{2}=OG^{2}+NG^{2}.$因为$NG = 5\ cm,$所以$(10 - x)^{2}+(\frac{5}{2})^{2}=x^{2}+5^{2},$解得$x=\frac{65}{16},$所以$OG=\frac{65}{16}\ cm,$所以$ON=\sqrt{OG^{2}+NG^{2}}=\frac{25\sqrt{17}}{16}\ cm,$所以此时圆形硬纸板的直径是$\frac{25\sqrt{17}}{16}\times2=\frac{25\sqrt{17}}{8}$($cm$).
(1)证明:如图①,延长$BP$至点$E,$使$PE = PC,$连接$EC.$因为$\triangle ABC$是等边三角形,所以$\angle ACB=\angle BAC = 60^{\circ},$$AC = BC.$因为四边形$ABPC$内接于$\odot O,$所以$\angle BAC+\angle BPC = 180^{\circ}.$因为$\angle BPC+\angle CPE = 180^{\circ},$所以$\angle CPE=\angle BAC = 60^{\circ},$所以$\triangle PCE$是等边三角形,所以$EC = PC,$$\angle PCE = 60^{\circ}.$因为$\angle BCE=\angle BCP+\angle PCE,$$\angle ACP=\angle BCP+\angle ACB,$所以$\angle BCE=\angle ACP.$在$\triangle BEC$和$\triangle APC$中,$\begin{cases}EC = PC\\\angle BCE=\angle ACP\\BC = AC\end{cases},$所以$\triangle BEC\cong\triangle APC,$所以$EB = PA.$因为$EB = PB + PE = PB + PC,$所以$PA = PB + PC.$
(2)证明:如图②,连接$OA,$$OB,$过点$B$作$BE\perp PB$交$PA$于点$E,$则$\angle PBE = 90^{\circ}.$因为四边形$ABCD$是正方形,所以$BA = BC,$$\angle ABC = 90^{\circ},$所以$\angle ABE+\angle CBE = 90^{\circ}.$又$\angle CBP+\angle CBE=\angle PBE = 90^{\circ},$所以$\angle ABE=\angle CBP.$因为$\angle AOB=\frac{1}{4}\times360^{\circ}=90^{\circ},$所以$\angle APB=\frac{1}{2}\angle AOB = 45^{\circ},$所以$\angle BEP = 90^{\circ}-\angle APB = 45^{\circ},$所以$\angle APB=\angle BEP,$所以$EB = PB,$所以$PE=\sqrt{EB^{2}+PB^{2}}=\sqrt{2}PB.$在$\triangle ABE$和$\triangle CBP$中,$\begin{cases}EB = PB\\\angle ABE=\angle CBP\\BA = BC\end{cases},$所以$\triangle ABE\cong\triangle CBP,$所以$EA = PC,$所以$PA = EA + PE = PC+\sqrt{2}PB.$