(1)证明:如图①,延长$BP$至点$E,$使$PE = PC,$连接$EC.$因为$\triangle ABC$是等边三角形,所以$\angle ACB=\angle BAC = 60^{\circ},$$AC = BC.$因为四边形$ABPC$内接于$\odot O,$所以$\angle BAC+\angle BPC = 180^{\circ}.$因为$\angle BPC+\angle CPE = 180^{\circ},$所以$\angle CPE=\angle BAC = 60^{\circ},$所以$\triangle PCE$是等边三角形,所以$EC = PC,$$\angle PCE = 60^{\circ}.$因为$\angle BCE=\angle BCP+\angle PCE,$$\angle ACP=\angle BCP+\angle ACB,$所以$\angle BCE=\angle ACP.$在$\triangle BEC$和$\triangle APC$中,$\begin{cases}EC = PC\\\angle BCE=\angle ACP\\BC = AC\end{cases},$所以$\triangle BEC\cong\triangle APC,$所以$EB = PA.$因为$EB = PB + PE = PB + PC,$所以$PA = PB + PC.$
(2)证明:如图②,连接$OA,$$OB,$过点$B$作$BE\perp PB$交$PA$于点$E,$则$\angle PBE = 90^{\circ}.$因为四边形$ABCD$是正方形,所以$BA = BC,$$\angle ABC = 90^{\circ},$所以$\angle ABE+\angle CBE = 90^{\circ}.$又$\angle CBP+\angle CBE=\angle PBE = 90^{\circ},$所以$\angle ABE=\angle CBP.$因为$\angle AOB=\frac{1}{4}\times360^{\circ}=90^{\circ},$所以$\angle APB=\frac{1}{2}\angle AOB = 45^{\circ},$所以$\angle BEP = 90^{\circ}-\angle APB = 45^{\circ},$所以$\angle APB=\angle BEP,$所以$EB = PB,$所以$PE=\sqrt{EB^{2}+PB^{2}}=\sqrt{2}PB.$在$\triangle ABE$和$\triangle CBP$中,$\begin{cases}EB = PB\\\angle ABE=\angle CBP\\BA = BC\end{cases},$所以$\triangle ABE\cong\triangle CBP,$所以$EA = PC,$所以$PA = EA + PE = PC+\sqrt{2}PB.$