解: (1)设$\odot O$的半径为$R,$则$OA = OE = R.$因为$DE$垂直平分$OA,$$DE = 4\sqrt{3},$所以$CE=\frac{1}{2}DE = 2\sqrt{3},$$\angle OCE = 90^{\circ},$$OC=\frac{1}{2}OA=\frac{1}{2}R,$所以$CE=\sqrt{OE^{2}-OC^{2}}=\frac{\sqrt{3}}{2}R,$所以$\frac{\sqrt{3}}{2}R = 2\sqrt{3},$解得$R = 4.$故$\odot O$的半径为$4.$
(2)因为$\angle OCE = 90^{\circ},$$\angle DPA = 45^{\circ},$所以$\angle D=\angle OCE-\angle DPA = 45^{\circ},$所以$\angle EOF = 2\angle D = 90^{\circ}.$设该圆锥的底面圆半径为$r.$由题意,得$\pi\times r\times4=\frac{90\pi\times4^{2}}{360},$解得$r = 1.$故该圆锥的底面圆半径为$1.$