电子课本网 第61页

第61页

信息发布者:
$\frac{\sqrt{3}}{3}$
$12\pi - 9\sqrt{3}$
解: (1)设$\odot O$的半径为$R,$则$OA = OE = R.$因为$DE$垂直平分$OA,$$DE = 4\sqrt{3},$所以$CE=\frac{1}{2}DE = 2\sqrt{3},$$\angle OCE = 90^{\circ},$$OC=\frac{1}{2}OA=\frac{1}{2}R,$所以$CE=\sqrt{OE^{2}-OC^{2}}=\frac{\sqrt{3}}{2}R,$所以$\frac{\sqrt{3}}{2}R = 2\sqrt{3},$解得$R = 4.$故$\odot O$的半径为$4.$
(2)因为$\angle OCE = 90^{\circ},$$\angle DPA = 45^{\circ},$所以$\angle D=\angle OCE-\angle DPA = 45^{\circ},$所以$\angle EOF = 2\angle D = 90^{\circ}.$设该圆锥的底面圆半径为$r.$由题意,得$\pi\times r\times4=\frac{90\pi\times4^{2}}{360},$解得$r = 1.$故该圆锥的底面圆半径为$1.$
B
$\sqrt{3}:2$
解: (1)由题意,得$S_{侧}=\pi\times(\frac{1}{2}\times10)\times15 = 75\pi(\text{cm}^{2}).$设侧面展开图的圆心角的度数为$n^{\circ}.$由题意,得$\frac{n\pi\times15^{2}}{360}=75\pi,$解得$n = 120.$故该圆锥形容器的侧面积为$75\pi\text{ cm}^{2},$它的侧面展开图的圆心角的度数为$120^{\circ}. $