电子课本网 第62页

第62页

信息发布者:
C
2或10
解: (1)设$CE = t。$由折叠的性质,得$\angle AED=\angle CED,$$AE = CE = t。$因为$OA = 8,$所以$OE=OA - AE = 8 - t。$因为$\angle COE = 90^{\circ},$所以$OC^{2}+OE^{2}=CE^{2}。$因为$OC = 4,$所以$4^{2}+(8 - t)^{2}=t^{2},$
$\begin{aligned}16+(64 - 16t+t^{2})&=t^{2}\\16 + 64-16t+t^{2}&=t^{2}\\80-16t&=0\\16t&=80\\t&=5\end{aligned}$
所以$AE = CE = 5。$因为四边形$OABC$是矩形,所以$BC// OA,$所以$\angle CDE=\angle AED,$所以$\angle CDE=\angle CED,$所以$CD = CE = 5,$所以点$D$的坐标为$(5,4)。$
设直线$AD$的函数表达式为$y = kx + b。$把点$A(8,0),$$D(5,4)$分别代入$y = kx + b,$得$\begin{cases}8k + b = 0\\5k + b = 4\end{cases},$
由$8k + b = 0$可得$b=-8k,$将$b = - 8k$代入$5k + b = 4$得:
$\begin{aligned}5k-8k&=4\\-3k&=4\\k&=-\frac{4}{3}\end{aligned}$
则$b=-8\times(-\frac{4}{3})=\frac{32}{3},$所以直线$AD$的函数表达式为$y = -\frac{4}{3}x+\frac{32}{3}。$
(2)①因为$BC// OA,$所以$\angle DCA=\angle CAO。$由折叠的性质,得$CD = AD,$所以$\angle DCA=\angle DAC,$所以$\angle DAC=\angle CAO,$所以$AC$平分$\angle DAO,$所以$AC$上的点到直线$AO$和直线$AD$的距离相等,所以点$M$到直线$AO$和直线$AD$的距离相等。因为$\odot M$始终与$x$轴相切,所以点$M$到直线$AO$的距离为$\odot M$的半径,所以点$M$到直线$AD$的距离也为$\odot M$的半径,所以直线$AD$与$\odot M$相切。
②若存在满足题意的$\odot M,$则点$M$到$y$轴的距离等于$\odot M$的半径。设$\odot M$的半径为$r,$直线$AC$的函数表达式为$y = mx + n。$把点$A(8,0),$$C(0,4)$分别代入$y = mx + n,$得$\begin{cases}8m + n = 0\\n = 4\end{cases},$将$n = 4$代入$8m + n = 0$得$8m+4 = 0,$$8m=-4,$$m = -\frac{1}{2},$所以直线$AC$的函数表达式为$y = -\frac{1}{2}x + 4。$
令$y = r,$得$-\frac{1}{2}x + 4 = r,$
$\begin{aligned}-\frac{1}{2}x&=r - 4\\x&=8 - 2r\end{aligned}$
所以点$M$的坐标为$(8 - 2r,r),$所以$8 - 2r = r$或$8 - 2r=-r,$
当$8 - 2r = r$时,
$\begin{aligned}8&=r + 2r\\3r&=8\\r&=\frac{8}{3}\end{aligned}$
当$8 - 2r=-r$时,
$\begin{aligned}8&=-r + 2r\\r&=8\end{aligned}$
所以点$M$的坐标为$(\frac{8}{3},\frac{8}{3})$或$(-8,8)。$故$\odot M$能与$y$轴也相切,此时圆心$M$的坐标为$(\frac{8}{3},\frac{8}{3})$或$(-8,8)。$