(1)证明:因为$\angle COD = \angle AOB = 90^{\circ},$所以$\angle AOC + \angle AOD = \angle BOD + \angle AOD,$所以$\angle AOC = \angle BOD。$
在$\triangle AOC$和$\triangle BOD$中,$\begin{cases}AO = BO\\\angle AOC = \angle BOD\\CO = DO\end{cases},$所以$\triangle AOC\cong\triangle BOD,$所以$AC = BD。$
(2)解:如图,以点$O$为圆心,$OC$为半径画弧,分别交$OA,$$OB$于点$F,$$E。$
因为$\angle COF = \angle EOD,$所以$S_{扇形OCF} = S_{扇形OED}。$
因为$\triangle AOC\cong\triangle BOD,$所以$S_{\triangle AOC} = S_{\triangle BOD},$所以$S_{\triangle AOC} - S_{扇形OCF} = S_{\triangle BOD} - S_{扇形OED},$即$S = S',$所以$S_{阴影} = S_{扇形OAB} - S_{扇形OEF}。$
设$OA = r,$则$S_{扇形OAB} = \frac{90\pi r^{2}}{360}=\frac{\pi r^{2}}{4}。$
因为$OC = 3,$所以$S_{扇形OEF} = \frac{90\pi\times3^{2}}{360}=\frac{9\pi}{4}。$
又$S_{阴影}=\frac{7\pi}{4},$所以$\frac{\pi r^{2}}{4}-\frac{9\pi}{4}=\frac{7\pi}{4},$
等式两边同时乘以$4$得:$\pi r^{2}-9\pi = 7\pi,$
移项得:$\pi r^{2}=7\pi + 9\pi,$
即$\pi r^{2}=16\pi,$
等式两边同时除以$\pi$得:$r^{2}=16,$
解得$r = 4$(负值舍去)。
故$OA$的长为$4。$