(2) 解:因为$\triangle ABC$是边长为$1$的等边三角形,所以点$B,$$C$在以点$A$为圆心,$1$为半径的$\odot A$上. 因为$BC$是$\odot O$的以点$A$为中心的“关联线段”,所以点$B,$$C$绕点$A$旋转后的对应点$B',$$C'$是$\odot A$和$\odot O$的交点. 如图①,不妨设点$A$在$x$轴上方,点$B'$在点$C'$左侧,$OA$与$B'C'$的交点为$D,$连接$OB',$$OC',$$AB',$$AC',$则$OB' = OC' = AB' = AC' = 1,$所以四边形$AB'OC'$是菱形,所以$AD=\frac{1}{2}OA,$$OA\perp B'C',$所以$\angle ADB' = 90^{\circ}.$ 因为$\angle AB'C' = 60^{\circ},$所以$\angle B'AD = 90^{\circ}-\angle AB'C' = 30^{\circ},$所以$B'D=\frac{1}{2}AB'=\frac{1}{2},$所以$AD = \sqrt{AB'^{2}-B'D^{2}}=\frac{\sqrt{3}}{2},$所以$OA = 2AD=\sqrt{3},$所以$A(0,\sqrt{3});$当点$A$在$x$轴下方时,同理可得$A(0,-\sqrt{3}).$ 综上所述,$t$的值为$\pm\sqrt{3}.$
(3) 解:如图②,由题意,得$AB' = AB = 1,$$AC' = AC = 2,$$OB' = OC' = 1.$ 如图③,当$A,$$O,$$C'$三点共线时,$OA$的长取最小值,此时$OA = AC'-OC' = 1,$则$OA = OB' = OC'.$ 因为点$B',$$C'$在$\odot O$上,所以$AC'$为$\odot O$的直径,所以$\angle AB'C' = 90^{\circ},$所以$BC = B'C'=\sqrt{AC'^{2}-AB'^{2}}=\sqrt{3};$如图④,当$A,$$O,$$B'$三点共线时,$OA$的长取最大值,此时$OA = AB'+OB' = 2,$所以$OA = AC'.$ 过点$A$作$AE\perp OC'$于点$E,$过点$C'$作$C'F\perp OA$于点$F,$则$\angle OEA=\angle OFC'=\angle B'FC' = 90^{\circ},$$OE=\frac{1}{2}OC'=\frac{1}{2},$所以$AE = \sqrt{OA^{2}-OE^{2}}=\frac{\sqrt{15}}{2}.$ 因为$S_{\triangle AOC'}=\frac{1}{2}OA\cdot C'F=\frac{1}{2}OC'\cdot AE,$所以$C'F=\frac{OC'\cdot AE}{OA}=\frac{\sqrt{15}}{4},$所以$OF = \sqrt{OC'^{2}-C'F^{2}}=\frac{1}{4},$所以$B'F = OB'-OF=\frac{3}{4},$所以$BC = B'C'=\sqrt{B'F^{2}+C'F^{2}}=\frac{\sqrt{6}}{2}.$ 综上所述,$OA$长的最小值为$1,$相应的$BC$长为$\sqrt{3};$$OA$长的最大值为$2,$相应的$BC$长为$\frac{\sqrt{6}}{2}.$