解:(1)设$y$与$x$的函数解析式为$y = kx + b(k\neq0).$
将$(25,250),$$(40,100)$代入$y = kx + b,$得$\begin{cases}25k + b = 250\\40k + b = 100\end{cases},$
用$25k + b = 250$减去$40k + b = 100$得:
$25k + b -(40k + b)=250 - 100,$
$25k + b - 40k - b = 150,$
$-15k = 150,$
$k = - 10.$
把$k = - 10$代入$25k + b = 250$得:
$25\times(-10)+b = 250,$
$-250 + b = 250,$
$b = 500.$
所以$y$与$x$的函数解析式为$y = - 10x + 500.$
(2)根据题意,得$(x - 20)(-10x + 500) = 1440,$
$-10x^2 + 500x + 200x - 10000 = 1440,$
$-10x^2 + 700x - 11440 = 0,$
$x^2 - 70x + 1144 = 0,$
$(x - 26)(x - 44) = 0,$
解得$x_1 = 26,$$x_2 = 44.$
又因为能让消费者减少花费,所以$x = 26.$
所以此时的售价为$26$元/件.
(3)该超市不能保证出售该商品每天获得$2500$元的利润.
理由:假设该超市能保证出售该商品每天获得$2500$元的利润,
根据题意,得$(x - 20)(-10x + 500) = 2500,$
$-10x^2 + 500x + 200x - 10000 = 2500,$
$-10x^2 + 700x - 12500 = 0,$
$x^2 - 70x + 1250 = 0.$
因为$\Delta = (-70)^2 - 4\times1\times1250 = 4900 - 5000 = - 100\lt0,$
所以该方程没有实数根.
所以假设不成立,即该超市不能保证出售该商品每天获得$2500$元的利润.