解:
(1)$\because x^2+(2m + 1)x + 2m = 0,$$\therefore\Delta=(2m + 1)^2-4\times1\times2m=(2m - 1)^2\geq0。$$\therefore$无论实数$m$取何值,此方程一定有两个实数根。
(2)$\because$此方程的两个实数根分别为$x_1,x_2,$$\therefore x_1 + x_2=-2m - 1,$$x_1x_2 = 2m。$$\because x_1^2 + x_2^2 = 13,$$\therefore(x_1 + x_2)^2-2x_1x_2 = 13,$即$(-2m - 1)^2-2\times2m = 13,$整理得$m^2 = 3,$解得$m_1=-\sqrt{3},m_2=\sqrt{3}。$$\therefore m$的值为$-\sqrt{3}$或$\sqrt{3}。$