电子课本网 第25页

第25页

信息发布者:
B
1.5
2
$-10x^{2}+45x$
解:(2)依题意,得$25\times20-(-10x^{2}+45x)-(5x)^{2}=440,$
$500 + 10x^{2}-45x - 25x^{2}=440,$
$-15x^{2}-45x + 500 - 440 = 0,$
$-15x^{2}-45x + 60 = 0,$
两边同时除以$-15$得$x^{2}+3x - 4 = 0,$
因式分解得$(x + 4)(x - 1)=0,$
则$x + 4 = 0$或$x - 1 = 0,$
解得$x_{1}=1,$$x_{2}=-4$(不合题意,舍去).
所以此时小路的宽度为$1$米.
解:(1)设配色条纹的宽度为$x$米.
依题意,得$2x\cdot5 + 2x\cdot4-4x^{2}=\frac{17}{80}\times5\times4,$
$10x + 8x-4x^{2}=\frac{17}{4},$
$-4x^{2}+18x-\frac{17}{4}=0,$
两边同时乘以$-4$得$16x^{2}-72x + 17 = 0,$
对于一元二次方程$ax^{2}+bx+c = 0$($a\neq0$),这里$a = 16,$$b = -72,$$c = 17,$
由求根公式$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$可得:
$x=\frac{72\pm\sqrt{(-72)^{2}-4\times16\times17}}{2\times16}=\frac{72\pm\sqrt{5184 - 1088}}{32}=\frac{72\pm\sqrt{4096}}{32}=\frac{72\pm64}{32},$
解得$x_{1}=\frac{72 + 64}{32}=\frac{136}{32}=\frac{17}{4}$(不合题意,舍去),$x_{2}=\frac{72 - 64}{32}=\frac{8}{32}=\frac{1}{4}.$
所以配色条纹的宽度为$\frac{1}{4}$米.
(2)配色条纹部分的造价:$\frac{17}{80}\times5\times4\times200 = 850$(元),
其余部分的造价:$(1-\frac{17}{80})\times5\times4\times100=\frac{63}{80}\times200 = 1575$(元).
总造价$=850 + 1575 = 2425$(元).
所以地毯的总造价是$2425$元.