电子课本网 第79页

第79页

信息发布者:
B
B
$36^{\circ}$
$(1,-1)$
$3\sqrt{3}-3$
解: (1)四边形$AFHE$是正方形
理由:$\because$ $Rt\triangle ABE$绕点$A$按逆时针方向旋转$90^{\circ}$得到$\triangle ADF,$$\therefore$ $Rt\triangle ABE\cong Rt\triangle ADF。$
$\therefore$ $\angle AEB=\angle AFD = 90^{\circ},$$\therefore$ $\angle AFH = 90^{\circ}。$$\because$ $Rt\triangle ABE\cong Rt\triangle ADF,$$\therefore$ $AE = AF,$$\angle BAE=\angle DAF。$
又$\because$ 易得$\angle DAF+\angle FAB = 90^{\circ},$$\therefore$ $\angle BAE+\angle FAB = 90^{\circ},$$\therefore$ $\angle FAE = 90^{\circ}。$
在四边形$AFHE$中,$\angle FAE = 90^{\circ},$$\angle AEH = 90^{\circ},$$\angle AFH = 90^{\circ},$
$\therefore$ 四边形$AFHE$是矩形。又$\because$ $AE = AF,$$\therefore$ 四边形$AFHE$是正方形。
(2)设$AE = x。$易得$AE = EH = FH = x,$$BC = AB = 13。$
在$Rt\triangle AEB$中,$AB^{2}=AE^{2}+BE^{2},$即$13^{2}=x^{2}+(x + 7)^{2},$
解得$x_{1}=5,$$x_{2}=-12$(不合题意,舍去)。$\therefore$ $EH = FH = 5。$
$\therefore$ $BE = BH+EH = 7 + 5 = 12。$$\because$ $Rt\triangle ABE\cong Rt\triangle ADF,$
$\therefore$ $DF = BE = 12。$$\therefore$ $DH = DF+FH = 12 + 5 = 17$