解:如图,过点$O$作$OF\perp CD$于点$F,$$OG\perp AB$于点$G,$连接$OB,$$OD,$$OE。$
因为垂径定理,所以$DF = CF=\frac{1}{2}CD,$$AG = BG=\frac{1}{2}AB = 3。$
则$EG=AG - AE=3 - 1 = 2。$
在$Rt\triangle BOG$中,$OB = \sqrt{13},$由勾股定理$OG=\sqrt{OB^{2}-BG^{2}}=\sqrt{(\sqrt{13})^{2}-3^{2}} = 2。$
所以$EG = OG,$那么$\triangle EOG$是等腰直角三角形。
所以$\angle OEG = 45^{\circ},$$OE=\sqrt{2}OG = 2\sqrt{2}。$
因为$\angle DEB = 75^{\circ},$所以$\angle OEF=\angle DEB-\angle OEG=75^{\circ}-45^{\circ}=30^{\circ}。$
所以$OF=\frac{1}{2}OE=\sqrt{2}。$
在$Rt\triangle ODF$中,$OD = \sqrt{13},$由勾股定理得$DF=\sqrt{OD^{2}-OF^{2}}=\sqrt{(\sqrt{13})^{2}-(\sqrt{2})^{2}}=\sqrt{11}。$
所以$CD = 2DF = 2\sqrt{11}。$