解:
(1)连接$OD。$设$\odot O$的半径为$r。$
因为$AB\perp CD,$所以$\angle OED = 90^{\circ},$$DE = CE=\frac{1}{2}CD=\frac{1}{2}\times8 = 4。$
在$Rt\triangle ODE$中,$OE=r - 2,$$OD = r,$$DE = 4,$
由勾股定理$(r - 2)^{2}+4^{2}=r^{2},$
展开得$r^{2}-4r + 4+16=r^{2},$
移项化简得$4r = 20,$解得$r = 5,$即$\odot O$的半径为$5。$
(2)在$Rt\triangle BCE$中,$CE = 4,$$BE=AB - AE=10 - 2 = 8,$
由勾股定理$BC=\sqrt{CE^{2}+BE^{2}}=\sqrt{4^{2}+8^{2}} = 4\sqrt{5}。$
因为$OF\perp BC,$所以$BF = CF=\frac{1}{2}BC = 2\sqrt{5},$$\angle OFB = 90^{\circ}。$
在$Rt\triangle OBF$中,$OF=\sqrt{OB^{2}-BF^{2}}=\sqrt{5^{2}-(2\sqrt{5})^{2}}=\sqrt{25 - 20}=\sqrt{5}。$