解:(1)$\because \angle ADC=\angle BCD = 90^{\circ},$
$\therefore AC,$$BD$是$\odot O$的直径,且交点为圆心$O。$
$\because AD = CD,$$AO = CO,$
$\therefore AC\perp BD。$
(2)连接$CO$并延长,交$\odot O$于点$K,$连接$DK,$$BC,$则$\angle KDC = 90^{\circ}。$
$\therefore \angle K+\angle KCD = 90^{\circ}。$
$\because AC\perp BD,$$\therefore \angle ACB+\angle EBC = 90^{\circ}。$
$\because \angle K=\angle EBC,$$\therefore \angle KCD=\angle ACB。$
$\therefore \overset{\frown}{DK}=\overset{\frown}{AB}。$
$\therefore DK = AB = 2。$
在$Rt\triangle KCD$中,$\because DC = 4,$$DK = 2,$
$\therefore KC=\sqrt{2^{2}+4^{2}}=2\sqrt{5}。$
$\therefore \odot O$的半径为$\sqrt{5}。$