电子课本网 第91页

第91页

信息发布者:
$2\sqrt{2}$
解:(1)如图,连接$BD。$
$\because \angle ACD = 30^{\circ},$$\therefore \angle B=\angle ACD = 30^{\circ}。$
$\because AB$是$\odot O$的直径,$\therefore \angle ADB = 90^{\circ}。$
$\therefore \angle DAB = 90^{\circ}-\angle B = 60^{\circ}。$
(2)$\because \angle ADB = 90^{\circ},$$\angle B = 30^{\circ},$$AB = 4,$
$\therefore AD=\frac{1}{2}AB = 2。$
$\because \angle DAB = 60^{\circ},$$DE\perp AB,$且$AB$是$\odot O$的直径,
$\therefore \angle ADE = 30^{\circ},$$DE = EF。$
$\therefore AE=\frac{1}{2}AD = 1。$
$\therefore DE=\sqrt{AD^{2}-AE^{2}}=\sqrt{2^{2}-1^{2}}=\sqrt{3}。$
$\therefore DF = DE + EF = 2DE = 2\sqrt{3}。$
解:(1)$\because \angle ACB=\frac{1}{2}\angle AOB,$$\angle BAC=\frac{1}{2}\angle BOC,$$\angle ACB = 2\angle BAC,$
$\therefore \angle AOB = 2\angle BOC。$
(2)如图,过点$O$作半径$OD\perp AB$于点$E,$连接$DB。$
$\therefore AE = BE。$
$\because \angle AOB = 2\angle BOC,$$\angle DOB=\frac{1}{2}\angle AOB,$
$\therefore \angle DOB=\angle BOC。$
$\therefore BD = BC。$
$\because AB = 4,$$BC=\sqrt{5},$$\therefore BE = 2,$$DB=\sqrt{5}。$
在$Rt\triangle BDE$中,$\angle DEB = 90^{\circ},$
$\therefore DE=\sqrt{BD^{2}-BE^{2}}=\sqrt{(\sqrt{5})^{2}-2^{2}} = 1。$
在$Rt\triangle BOE$中,$\angle OEB = 90^{\circ},$$OB^{2}=(OB - 1)^{2}+2^{2},$
$OB^{2}=OB^{2}-2OB + 1+4,$
$2OB = 5,$
解得$OB=\frac{5}{2},$即$\odot O$的半径是$\frac{5}{2}。$
解:(1)$\because \angle ADC=\angle BCD = 90^{\circ},$
$\therefore AC,$$BD$是$\odot O$的直径,且交点为圆心$O。$
$\because AD = CD,$$AO = CO,$
$\therefore AC\perp BD。$
(2)连接$CO$并延长,交$\odot O$于点$K,$连接$DK,$$BC,$则$\angle KDC = 90^{\circ}。$
$\therefore \angle K+\angle KCD = 90^{\circ}。$
$\because AC\perp BD,$$\therefore \angle ACB+\angle EBC = 90^{\circ}。$
$\because \angle K=\angle EBC,$$\therefore \angle KCD=\angle ACB。$
$\therefore \overset{\frown}{DK}=\overset{\frown}{AB}。$
$\therefore DK = AB = 2。$
在$Rt\triangle KCD$中,$\because DC = 4,$$DK = 2,$
$\therefore KC=\sqrt{2^{2}+4^{2}}=2\sqrt{5}。$
$\therefore \odot O$的半径为$\sqrt{5}。$