解:(1)$\because AB$是$\odot O$的直径,弦$CD\perp AB,$$CD = 16,$
$\therefore \angle OED = 90^{\circ},$$DE=\frac{1}{2}CD = 8。$
$\because BE = 4,$$\therefore OE = OB - BE = OD - 4。$
在$Rt\triangle OED$中,$\because OE^{2}+DE^{2}=OD^{2},$
$\therefore (OD - 4)^{2}+8^{2}=OD^{2},$
$OD^{2}-8OD + 16+64=OD^{2},$
$-8OD=-80,$
$\therefore OD = 10。$
$\therefore \odot O$的直径是$20。$
(2)由(1),得$\angle OED = 90^{\circ},$$\therefore \angle EOD+\angle D = 90^{\circ}。$
$\because \angle M=\angle D,$$\angle EOD = 2\angle M,$
$\therefore \angle EOD+\angle D = 2\angle M+\angle D = 2\angle D+\angle D = 90^{\circ},$
$3\angle D = 90^{\circ},$
$\therefore \angle D = 30^{\circ}。$