解:(1)如图①,延长$BP$至点$E,$使$PE = PC,$连接$CE。$
因为$\triangle ABC$是正三角形,所以$\angle BAC=\angle ACB = 60^{\circ},$$BC = AC。$
因为$A,$$B,$$P,$$C$四点共圆,所以$\angle BAC+\angle BPC = 180^{\circ}。$
因为$\angle BPC+\angle EPC = 180^{\circ},$所以$\angle BAC=\angle EPC = 60^{\circ}。$
因为$PE = PC,$所以$\triangle PCE$是正三角形,所以$PE = EC = PC,$$\angle PCE = 60^{\circ}。$
又因为$\angle BCE = 60^{\circ}+\angle BCP,$$\angle ACP = 60^{\circ}+\angle BCP,$所以$\angle BCE=\angle ACP。$
在$\triangle BEC$和$\triangle APC$中,$\begin{cases}EC = PC\\\angle BCE=\angle ACP\\BC = AC\end{cases},$所以$\triangle BEC\cong\triangle APC(SAS),$所以$EB = PA = PB + PE = PB + PC。$
(2)如图②,过点$B$作$BE\perp PB$交$PA$于点$E,$连接$OA,$$OB。$
因为四边形$ABCD$是正方形,所以$\angle AOB=\angle ABC = 90^{\circ},$$AB = CB。$
因为$BE\perp PB,$所以$\angle EBP = 90^{\circ},$所以$\angle 1+\angle EBC=\angle EBC+\angle 2 = 90^{\circ},$所以$\angle 1=\angle 2。$
因为$\angle APB=\frac{1}{2}\angle AOB = 45^{\circ},$所以$BE = BP,$$PE=\sqrt{2}PB。$
在$\triangle ABE$和$\triangle CBP$中,$\begin{cases}BE = BP\\\angle 1=\angle 2\\AB = CB\end{cases},$所以$\triangle ABE\cong\triangle CBP(SAS),$所以$EA = PC,$所以$PA = EA + PE = PC+\sqrt{2}PB。$