电子课本网 第107页

第107页

信息发布者:
B
$\sqrt{2}:1$
$11\pi$
(1)证明:$\because AB$是半圆$O$的直径,$\therefore\angle ACB = 90^{\circ}。$$\because CP$是半圆$O$的切线,$\therefore\angle OCP = 90^{\circ}。$$\therefore\angle ACB=\angle OCP。$$\therefore\angle ACB-\angle OCB=\angle OCP-\angle OCB。$$\therefore\angle ACO=\angle BCP。$
(2)解:由(1),知$\angle ACO=\angle BCP。$$\because\angle ABC = 2\angle BCP,$$\therefore\angle ABC = 2\angle ACO。$$\because OA = OC,$$\therefore\angle ACO=\angle BAC。$$\therefore\angle ABC = 2\angle BAC。$$\because\angle ABC+\angle BAC = 90^{\circ},$$\therefore\angle BAC = 30^{\circ},$$\angle ABC = 60^{\circ}。$$\therefore\angle ACO=\angle BCP = 30^{\circ}。$$\therefore\angle P=\angle ABC-\angle BCP = 60^{\circ}-30^{\circ}=30^{\circ}。$
(3)解:由(2),知$\angle BAC = 30^{\circ}。$$\because\angle ACB = 90^{\circ},$$\therefore BC=\frac{1}{2}AB = 2,$则$AC=\sqrt{AB^{2}-BC^{2}}=2\sqrt{3}。$$\therefore S_{\triangle ABC}=\frac{1}{2}BC\cdot AC=\frac{1}{2}\times2\times2\sqrt{3}=2\sqrt{3}。$$\therefore$阴影部分的面积是$\frac{1}{2}\pi\times(\frac{AB}{2})^{2}-2\sqrt{3}=2\pi-2\sqrt{3}。$
(1)证明:$\because AB$是半圆$O$的直径,$\therefore\angle ACB = 90^{\circ}。$$\therefore\angle BAC+\angle ABC = 90^{\circ}。$$\because\angle D=\angle ABC,$$\therefore\angle D+\angle BAC = 90^{\circ}。$$\therefore\angle ABD = 90^{\circ}。$$\because AB$是半圆$O$的直径,$\therefore BD$是半圆$O$的切线。
(2)解:如图,连接$OC。$$\because\angle ABC = 60^{\circ},$$\therefore\angle AOC = 2\angle ABC = 120^{\circ}。$$\because OC = OB,$$\therefore\triangle BOC$是等边三角形。$\therefore OC = BC = 3。$$\therefore\overset{\frown}{AC}$的长$=\frac{120\pi\times3}{180}=2\pi。$
解:连接$OD。$根据折叠的性质,得$S_{\triangle BDC}=S_{\triangle BOC},$$CD = OC,$$BD = BO,$$\angle DBC=\angle OBC。$$\therefore OB = OD = BD。$$\therefore\triangle OBD$是等边三角形。$\therefore\angle DBO = 60^{\circ}。$$\therefore\angle OBC=\frac{1}{2}\angle DBO = 30^{\circ}。$$\because\angle AOB = 90^{\circ},$$\therefore BC = 2OC。$由勾股定理,得$OC^{2}+OB^{2}=BC^{2}。$$\therefore OC^{2}+6^{2}=4OC^{2},$解得$OC = 2\sqrt{3}$(负值舍去)。$\therefore S_{\triangle BDC}=S_{\triangle BOC}=\frac{1}{2}OB\cdot OC=\frac{1}{2}\times6\times2\sqrt{3}=6\sqrt{3},$$S_{扇形OAB}=\frac{90\pi\times6^{2}}{360}=9\pi,$$\overset{\frown}{AB}$的长为$\frac{90\pi\times6}{180}=3\pi。$$\therefore$整个阴影部分的周长为$AC + CD + BD+\overset{\frown}{AB}=AC + OC + BO+\overset{\frown}{AB}=OA + OB+\overset{\frown}{AB}=6 + 6+3\pi=12 + 3\pi,$整个阴影部分的面积为$S_{扇形OAB}-S_{\triangle BDC}-S_{\triangle BOC}=9\pi-6\sqrt{3}-6\sqrt{3}=9\pi-12\sqrt{3}。$