解:设该圆锥底面圆的半径为$r\ cm.$ 过点$O$作$OD\perp AB,$垂足为$D.$
$\because OA = OB,$$\angle AOB = 120^{\circ},$$\therefore AD = BD=\frac{1}{2}AB = \sqrt{3}\ cm,$
$\angle OAD=\frac{1}{2}\times(180^{\circ}-120^{\circ}) = 30^{\circ}.$$\therefore OD=\frac{1}{2}OA.$
由勾股定理,得$AD^{2}+OD^{2}=OA^{2},$即$(\sqrt{3})^{2}+(\frac{1}{2}OA)^{2}=OA^{2}.$$\therefore OA = 2\ cm.$
$\therefore 2\pi r=\frac{120\pi\times2}{180},$解得$r = \frac{2}{3}.$$\therefore$该圆锥底面圆的半径为$\frac{2}{3}\ cm.$