解:(1)设$\angle BAC=\alpha.$ 根据题意,得$\overset{\frown}{EF}$的长就是圆锥底面圆的周长,
$\therefore \frac{\alpha}{180^{\circ}}\times\pi\times AD = ED\times\pi.$ 又$\because ED:AD = 1:2,$$\therefore AD = 2ED.$
$\therefore \alpha = 90^{\circ},$即$\angle BAC = 90^{\circ}.$
(2)$\because$圆锥底面圆的直径$ED$为$5\ cm,$$\therefore AD = 2ED = 10\ cm.$
$\because \angle BAC = 90^{\circ},$$AB = AC,$$\therefore \triangle ABC$是等腰直角三角形.
$\because AD\perp BC,$$\therefore$易得$BC = 2AD = 20\ cm.$
$\therefore S_{涂色部分}=S_{\triangle ABC}-S_{扇形AEF}=\frac{1}{2}BC\cdot AD-\frac{90\pi\times AD^{2}}{360}=\frac{1}{2}\times20\times10-\frac{90\pi\times10^{2}}{360}=(100 - 25\pi)cm^{2}.$