电子课本网 第109页

第109页

信息发布者:
C
$\frac{16\pi}{9}$
解:由题意,得$\frac{90\pi R}{180}=2\pi r,$
$\therefore R = 4r.$
解:设圆锥的高为$h\ cm,$底面圆的半径为$r\ cm,$母线$AC$长为$l\ cm.$
(1)由题意,得$\frac{180\pi l}{180}=2\pi r,$$\therefore \frac{l}{r}=2,$即圆锥的母线长与底面圆的半径的比值为$2.$
(2)$\because \frac{l}{r}=2,$$\therefore$易得圆锥的高与母线的夹角为$30^{\circ}.$
$\because AB = AC,$$AO\perp BC,$$\therefore \angle BAC = 2\times30^{\circ}=60^{\circ}.$
(3)由题意,可知$l^{2}=h^{2}+r^{2}.$ 又$\because \frac{l}{r}=2,$$h = 3\sqrt{3},$
$\therefore (2r)^{2}=(3\sqrt{3})^{2}+r^{2},$解得$r = 3$(负值舍去).$\therefore l = 2r = 6.$
$\therefore$圆锥的侧面积为$\frac{180\pi l^{2}}{360}=18\pi(cm^{2}).$
解:(1)设$\angle BAC=\alpha.$ 根据题意,得$\overset{\frown}{EF}$的长就是圆锥底面圆的周长,
$\therefore \frac{\alpha}{180^{\circ}}\times\pi\times AD = ED\times\pi.$ 又$\because ED:AD = 1:2,$$\therefore AD = 2ED.$
$\therefore \alpha = 90^{\circ},$即$\angle BAC = 90^{\circ}.$
(2)$\because$圆锥底面圆的直径$ED$为$5\ cm,$$\therefore AD = 2ED = 10\ cm.$
$\because \angle BAC = 90^{\circ},$$AB = AC,$$\therefore \triangle ABC$是等腰直角三角形.
$\because AD\perp BC,$$\therefore$易得$BC = 2AD = 20\ cm.$
$\therefore S_{涂色部分}=S_{\triangle ABC}-S_{扇形AEF}=\frac{1}{2}BC\cdot AD-\frac{90\pi\times AD^{2}}{360}=\frac{1}{2}\times20\times10-\frac{90\pi\times10^{2}}{360}=(100 - 25\pi)cm^{2}.$