解:将方程$t^2+2\sqrt {3}t = 4$化为一般形式
$t^2+2\sqrt {3}t - 4 = 0,$
其中$a = 1,$$b = 2\sqrt {3},$$c = -4。$
$ $先计算判别式$∆=b^2-4ac$
$=(2\sqrt {3})^2-4×1×(-4)$
$=12 + 16 $
$= 28。$
$ $再根据求根公式$t=\frac {-b\pm \sqrt {b^2-4ac}}{2a}$可得:
$ t=\frac {-2\sqrt {3}\pm \sqrt {28}}{2}=\frac {-2\sqrt {3}\pm 2\sqrt {7}}{2}=-\sqrt {3}\pm \sqrt {7},$
$ $所以$t_{1}=-\sqrt {3}+\sqrt {7},$$t_{2}=-\sqrt {3}-\sqrt {7}。$