解:如图,连接$OB$、$OC。$
因为$OA = OB,$$OC = OD,$
所以$\triangle OAB$、$\triangle OCD$均为等腰三角形,
所以$∠A = ∠ABO,$$∠OCD = ∠D。$
因为$∠A = 65°,$$∠D = 60°,$
所以$∠AOB = 180°-2∠A = 180°-2×65°=50°,$
$∠COD = 180°-2∠D = 180°-2×60°=60°。$
因为$\overset{\frown}{AD}$的度数为$150°,$
所以$∠AOD = 150°,$
所以$∠BOC = ∠AOD - ∠AOB - ∠COD = 150°-50°-60°=40°,$
所以$\overset{\frown}{BC}$的度数为$40°。$