解:设圆柱的底面半径为$2r,$圆锥的底面半径为
$3r,$高都为$h。$
$ \frac {3}{8}\pi (2r)^2h+\frac {1}{3}\pi (3r)^2h = 2$
$ \frac {3}{8}\pi ×4r^2h+\frac {1}{3}\pi ×9r^2h = 2$
$ \frac {3}{2}\pi r^2h + 3\pi r^2h = 2$
$ \frac {9}{2}\pi r^2h = 2$
$ \pi r^2h=\frac {4}{9}$
$ $圆柱的容积$V=\pi (2r)^2h = 4\pi r^2h=4×\frac {4}{9}=\frac {16}{9}($升$)$
答:圆柱形容器的容积是$\frac {16}{9}$升。