解$: (1)$如图
$(2)$由题意,得$∠1 = ∠2,$$∠3 = ∠4,$$∠5 = ∠6。$
$ $又因为$∠7 = ∠1 + ∠5,$$∠8 = ∠3 + ∠6,$
$ $所以$∠7 + ∠8 = (∠1 + ∠3)+(∠5 + ∠6)$
$=\frac {1}{2}(∠ABC + ∠ACB)+∠BAC。$
$ $因为$∠ABC + ∠ACB=180°-∠BAC,$
$ $所以$\frac {1}{2}(∠ABC + ∠ACB)+∠BAC=\frac {1}{2}(180°-∠BAC)+∠BAC $
$= 90°+\frac {1}{2}∠BAC。$
$ $已知$∠BAC = 70°,$
则$90°+\frac {1}{2}×70°=90°+35°=125°,$
即$∠BOC = 125°。$