解:$(2)$设$EF = x,$
则$CE = x,$$DE = 4 - x,$$AE = 4 + x。$
在$Rt\triangle ADE$中,
∵$DE^2+AD^2=AE^2,$
∴$(4 - x)^2+4^2=(4 + x)^2,$
展开式子得:$16 - 8x + x^2+16 = 16 + 8x + x^2,$
移项可得:$16 - 8x + x^2+16 - 16 - 8x - x^2=0,$
合并同类项得:$-16x + 16 = 0,$
移项得:$16x = 16,$
$ $解得$x = 1,$
∴$DE = 4 - 1 = 3,$
∴$S_{\triangle ADE}=\frac {1}{2}AD·DE=\frac {1}{2}×4×3 = 6 。$