电子课本网 第3页

第3页

信息发布者:
解:(4)$2x^2 - 5x + 3 = 0,$因式分解得$(2x - 3)(x - 1) = 0,$则$2x - 3 = 0$或$x - 1 = 0,$解得$x_1 = 1,$$x_2 = \frac{3}{2}。$
解:(5)$3(x - 1)^2 = 2x - 2,$变形为$3(x - 1)^2 - 2(x - 1) = 0,$提取公因式$(x - 1)$得$(x - 1)[3(x - 1) - 2] = 0,$即$(x - 1)(3x - 5) = 0,$则$x - 1 = 0$或$3x - 5 = 0,$解得$x_1 = 1,$$x_2 = \frac{5}{3}。$
解:(6)$(x^2 + x)^2 + (x^2 + x) = 6,$设$y = x^2 + x,$则$y^2 + y - 6 = 0,$因式分解得$(y + 3)(y - 2) = 0,$则$y + 3 = 0$或$y - 2 = 0。$当$y = -3$时,$x^2 + x = -3,$即$x^2 + x + 3 = 0,$$\Delta = 1^2 - 4\times1\times3 = -11\lt0,$方程无实数根;当$y = 2$时,$x^2 + x = 2,$即$x^2 + x - 2 = 0,$因式分解得$(x + 2)(x - 1) = 0,$解得$x_1 = -2,$$x_2 = 1。$
解:(1)因为$x_1,$$x_2$是关于$x$的一元二次方程$x^2 - 2kx + k^2 - k + 1 = 0$的两个不相等的实数根,所以$\Delta = (-2k)^2 - 4\times1\times(k^2 - k + 1) \gt 0,$即$4k^2 - 4k^2 + 4k - 4 \gt 0,$$4k - 4 \gt 0,$解得$k \gt 1。$
(2)因为$1\lt k\lt5$且$k$为整数,所以$k$的值可取$2,$$3,$$4。$当$k = 2$时,原方程可化为$x^2 - 4x + 3 = 0,$因式分解得$(x - 1)(x - 3) = 0,$解得$x_1 = 1,$$x_2 = 3,$符合题意;当$k = 3$时,原方程可化为$x^2 - 6x + 7 = 0,$$\Delta = (-6)^2 - 4\times1\times7 = 36 - 28 = 8,$$x = \frac{6\pm\sqrt{8}}{2} = 3\pm\sqrt{2},$不合题意,舍去;当$k = 4$时,原方程可化为$x^2 - 8x + 13 = 0,$$\Delta = (-8)^2 - 4\times1\times13 = 64 - 52 = 12,$$x = \frac{8\pm\sqrt{12}}{2} = 4\pm\sqrt{3},$不合题意,舍去。综上所述,$k$的值为$2。$
解:设道路的宽为$x$m。由题意,得$(50 - 2x)(38 - 2x) = 1260,$展开得$1900 - 76x - 100x + 4x^2 = 1260,$整理得$4x^2 - 176x + 640 = 0,$两边同时除以$4$得$x^2 - 44x + 160 = 0,$因式分解得$(x - 4)(x - 40) = 0,$则$x - 4 = 0$或$x - 40 = 0,$解得$x_1 = 4,$$x_2 = 40$(不合题意,舍去)。故道路的宽为$4$m。
解:(1)设2月、3月生产收入的月增长率是$x。$由题意,得$100 + 100(1 + x) + 100(1 + x)^2 = 364,$展开得$100 + 100 + 100x + 100(1 + 2x + x^2) = 364,$$100 + 100 + 100x + 100 + 200x + 100x^2 = 364,$整理得$100x^2 + 300x - 64 = 0,$两边同时除以$4$得$25x^2 + 75x - 16 = 0,$因式分解得$(5x - 1)(5x + 16) = 0,$则$5x - 1 = 0$或$5x + 16 = 0,$解得$x_1 = 0.2 = 20\%,$$x_2 = -3.2$(不合题意,舍去)。故2月、3月生产收入的月增长率是$20\%。$
(2)设使用新设备$y$个月后,该厂所得累计利润不低于使用旧设备的累计利润。由题意,得$364 + 100(1 + 20\%)^2(y - 3) - 640 \geq (90 - 5)y,$$364 + 100\times1.44(y - 3) - 640 \geq 85y,$$364 + 144y - 432 - 640 \geq 85y,$$144y - 85y \geq 432 + 640 - 364,$$59y \geq 708,$解得$y \geq 12。$故使用新设备$12$个月后,该厂所得累计利润不低于使用旧设备的累计利润。