电子课本网 第5页

第5页

信息发布者:
$-2$
$1$
解:(2)原方程两边分别平方,得$2x + 3 = x^2,$即$x^2 - 2x - 3 = 0,$因式分解得$(x - 3)(x + 1) = 0,$则$x - 3 = 0$或$x + 1 = 0,$解得$x_1 = 3,$$x_2 = -1。$经检验,当$x = -1$时,左边$=\sqrt{2\times(-1) + 3} = 1,$右边$= -1,$左边$\neq$右边,$x = -1$不合题意,舍去。故原方程的解为$x = 3。$
(3)因为四边形$ABCD$是矩形,所以$\angle A = \angle D = 90^{\circ},$$DC = AB = 3$m。设$AP = x$m。因为$AD = 8$m,所以$PD = AD - AP = (8 - x)$m。因为$BP = \sqrt{AP^2 + AB^2} = \sqrt{x^2 + 9}$m,$CP = \sqrt{PD^2 + DC^2} = \sqrt{(8 - x)^2 + 9}$m,所以$BP + CP = (\sqrt{x^2 + 9} + \sqrt{(8 - x)^2 + 9})$m。又$BP + CP = 10$m,所以$\sqrt{x^2 + 9} + \sqrt{(8 - x)^2 + 9} = 10,$即$\sqrt{(8 - x)^2 + 9} = 10 - \sqrt{x^2 + 9}。$两边分别平方,得$(8 - x)^2 + 9 = 100 + x^2 + 9 - 20\sqrt{x^2 + 9},$$64 - 16x + x^2 + 9 = 100 + x^2 + 9 - 20\sqrt{x^2 + 9},$$20\sqrt{x^2 + 9} = 4x + 46,$两边同时除以$2$得$10\sqrt{x^2 + 9} = 2x + 23,$两边分别平方,得$100(x^2 + 9) = (2x + 23)^2,$$100x^2 + 900 = 4x^2 + 92x + 529,$$96x^2 - 92x + 371 = 0,$$(x - 4)^2 = 0,$解得$x_1 = x_2 = 4。$经检验,$x = 4$是原方程的解且符合题意。故$AP$的长为$4$m。