电子课本网 第9页

第9页

信息发布者:
2$\pi$
6$\sqrt{3}+\pi$
$\frac{\pi}{8}$
$\sqrt{13}-1$
证明:(1) 因为$\angle AOB = 2\angle ACB,$$\angle BOC = 2\angle BAC,$$\angle ACB = 2\angle BAC,$所以$\angle AOB = 2\angle BOC。$
(2) 过点$O$作$OD\perp AB$于点$D,$延长$OD$交$\odot O$于点$E,$连接$BE,$则$\angle BDO=\angle BDE = 90^{\circ},$$BD=\frac{1}{2}AB,$$\overset{\frown}{AE}=\overset{\frown}{BE},$所以$\angle AOE=\angle BOE,$所以$\angle AOB = 2\angle BOE。$因为$\angle AOB = 2\angle BOC,$所以$\angle BOE=\angle BOC,$所以$BE = BC=\sqrt{5}。$因为$AB = 4,$所以$BD = 2,$所以$DE=\sqrt{BE^{2}-BD^{2}} = 1。$设$\odot O$的半径为$r,$则$OB = OE = r,$所以$OD = OE - DE = r - 1。$因为$OD^{2}+BD^{2}=OB^{2},$所以$(r - 1)^{2}+2^{2}=r^{2},$解得$r=\frac{5}{2}。$故$\odot O$的半径为$\frac{5}{2}。$
证明: (1) 连接$OC。$因为$C$是$\overset{\frown}{BE}$的中点,所以$\overset{\frown}{BC}=\overset{\frown}{CE},$所以$\angle OAC=\angle CAD。$因为$OA = OC,$所以$\angle OAC=\angle OCA,$所以$\angle CAD=\angle OCA,$所以$AE// OC。$因为$AE\perp CD,$所以$CD\perp OC。$因为$OC$是$\odot O$的半径,所以$CD$是$\odot O$的切线。
(2) 因为$AB$是$\odot O$的直径,所以$\angle ACB = 90^{\circ}。$因为$\angle ABC = 60^{\circ},$所以$\angle CAD=\angle OAC = 90^{\circ}-\angle ABC = 30^{\circ},$所以$\angle DAF=\angle OAC+\angle CAD = 60^{\circ}。$因为$AE\perp CD,$所以$\angle D = 90^{\circ},$所以$\angle F = 90^{\circ}-\angle DAF = 30^{\circ},$$AC = 2CD。$因为$CD=\sqrt{3},$所以$AC = 2\sqrt{3},$所以$AD=\sqrt{AC^{2}-CD^{2}} = 3,$所以$AF = 2AD = 6。$