证明: (1) 连接$OC。$因为$C$是$\overset{\frown}{BE}$的中点,所以$\overset{\frown}{BC}=\overset{\frown}{CE},$所以$\angle OAC=\angle CAD。$因为$OA = OC,$所以$\angle OAC=\angle OCA,$所以$\angle CAD=\angle OCA,$所以$AE// OC。$因为$AE\perp CD,$所以$CD\perp OC。$因为$OC$是$\odot O$的半径,所以$CD$是$\odot O$的切线。
(2) 因为$AB$是$\odot O$的直径,所以$\angle ACB = 90^{\circ}。$因为$\angle ABC = 60^{\circ},$所以$\angle CAD=\angle OAC = 90^{\circ}-\angle ABC = 30^{\circ},$所以$\angle DAF=\angle OAC+\angle CAD = 60^{\circ}。$因为$AE\perp CD,$所以$\angle D = 90^{\circ},$所以$\angle F = 90^{\circ}-\angle DAF = 30^{\circ},$$AC = 2CD。$因为$CD=\sqrt{3},$所以$AC = 2\sqrt{3},$所以$AD=\sqrt{AC^{2}-CD^{2}} = 3,$所以$AF = 2AD = 6。$