证明: (1) 因为$AB$是$\odot O$的直径,所以$\angle ACB = 90^{\circ},$所以$\angle OCB+\angle ACO = 90^{\circ}。$因为$CP$是$\odot O$的切线,所以$OC\perp CP,$所以$\angle OCP = 90^{\circ},$所以$\angle OCB+\angle BCP = 90^{\circ},$所以$\angle ACO=\angle BCP。$
(2) 因为$OA = OC,$所以$\angle OAC=\angle ACO=\angle BCP。$因为$\angle ABC = 2\angle BCP,$所以$\angle ABC = 2\angle OAC。$因为$\angle ACB = 90^{\circ},$所以$\angle ABC+\angle OAC = 90^{\circ},$所以$3\angle OAC = 90^{\circ},$所以$\angle OAC = 30^{\circ},$所以$\angle BOC = 2\angle OAC = 60^{\circ}。$因为$\angle OCP = 90^{\circ},$所以$\angle P = 90^{\circ}-\angle BOC = 30^{\circ}。$
(3) 因为$\angle ACB = 90^{\circ},$$\angle OAC = 30^{\circ},$$AB = 4,$所以$BC=\frac{1}{2}AB = 2,$所以$AC=\sqrt{AB^{2}-BC^{2}} = 2\sqrt{3},$所以$S_{\triangle ABC}=\frac{1}{2}AC\cdot BC = 2\sqrt{3}。$因为$OA=\frac{1}{2}AB = 2,$所以$S_{半圆}=\frac{1}{2}\pi\cdot OA^{2}=2\pi,$所以$S_{阴影}=S_{半圆}-S_{\triangle ABC}=2\pi - 2\sqrt{3}。$故阴影部分的面积为$2\pi - 2\sqrt{3}。$