解:(1)连接$OD。$因为直线$CD$与$\odot O$相切,所以$OD\perp CD,$所以$\angle ODC = 90^{\circ}。$
因为四边形$ABCD$为平行四边形,所以$AB// CD,$所以$\angle AOD=\angle ODC = 90^{\circ}。$
因为$OA = OD,$所以$\angle A=\angle ODA=\frac{1}{2}(180^{\circ}-\angle AOD)=45^{\circ}。$
(2)如图①,连接$OD,$过点$D$作$DM\perp OA$于点$M,$过点$O$作$ON\perp CD$于点$N,$则$\angle OMD=\angle AMD=\angle OND = 90^{\circ},$$DN=\frac{1}{2}DH。$
设$OM = x。$因为$\odot O$的半径为5,所以$OA = OD = 5,$所以$AM = OA - OM = 5 - x。$
因为$AM^{2}+DM^{2}=AD^{2},$$OM^{2}+DM^{2}=OD^{2},$所以$AD^{2}-AM^{2}=OD^{2}-OM^{2}。$
因为$AD = 6,$所以$6^{2}-(5 - x)^{2}=5^{2}-x^{2},$
$36-(25 - 10x + x^{2})=25 - x^{2},$
$36 - 25 + 10x - x^{2}=25 - x^{2},$
$10x = 25 + 25 - 36,$
$10x = 14,$
解得$x = 1.4,$即$OM = 1.4。$
因为四边形$ABCD$为平行四边形,所以$CD = AB = 2OA = 10,$$AB// CD,$所以$\angle CDM=\angle AMD = 90^{\circ},$所以四边形$OMDN$为矩形,所以$DN = OM = 1.4,$所以$DH = 2DN = 2.8,$所以$CH = CD - DH = 7.2。$
(3)分类讨论如下:
①如图②,当点$D$在点$E$左侧时,连接$OD,$过点$O$作$OF\perp CD$于点$F,$过点$D$作$DG\perp AB$于点$G,$则$\angle AGD=\angle OGD = 90^{\circ},$$DF=\frac{1}{2}DE,$四边形$OFDG$为矩形,所以$OG = DF。$
因为$DE = 6,$所以$OG = DF = 3。$因为$OA = OD = 5,$所以$AG = OA - OG = 2,$$DG=\sqrt{OD^{2}-OG^{2}} = 4,$所以$AD=\sqrt{AG^{2}+DG^{2}} = 2\sqrt{5};$
②如图③,当点$D$在点$E$右侧时,连接$OD,$过点$O$作$OQ\perp CE$于点$Q,$过点$D$作$DP\perp AB$于点$P,$则$DQ=\frac{1}{2}DE = 3,$$\angle APD = 90^{\circ},$四边形$DPOQ$为矩形,所以$OP = DQ = 3,$所以$AP = OA + OP = 8,$$PD=\sqrt{OD^{2}-OP^{2}} = 4,$所以$AD=\sqrt{AP^{2}+PD^{2}} = 4\sqrt{5}。$
综上所述,$AD$的长为$2\sqrt{5}$或$4\sqrt{5}。$