电子课本网 第18页

第18页

信息发布者:
解:(1)设$OC = x。$因为边$OA$比$OC$长2,所以$OA = x + 2,$所以$S_{矩形OABC}=OC\cdot OA=x(x + 2)。$
又$S_{矩形OABC}=15,$所以$x(x + 2)=15。$
整理,得$x^{2}+2x - 15 = 0,$分解因式得$(x + 5)(x - 3)=0,$则$x + 5 = 0$或$x - 3 = 0,$
解得$x_{1}=3,$$x_{2}=-5$(不合题意,舍去),所以$OA = 5,$$OC = 3。$
证明: (2)连接$O'D。$因为四边形$OABC$是矩形,所以$OC = AB,$$\angle OCE=\angle ABE = 90^{\circ}。$
因为$E$为$BC$的中点,所以$CE = BE。$
在$\triangle OCE$和$\triangle ABE$中,$\begin{cases}OC = AB \\ \angle OCE=\angle ABE \\ CE = BE\end{cases},$所以$\triangle OCE\cong\triangle ABE,$
所以$OE = AE,$所以$\angle AOE=\angle OAE。$
因为$O'O = O'D,$所以$\angle AOE=\angle O'DO,$所以$\angle OAE=\angle O'DO,$所以$O'D// AE。$
因为$DF\perp AE,$所以$DF\perp O'D。$
因为$O'D$为$\odot O'$的半径,所以$DF$为$\odot O'$的切线。
(3)点$P$的坐标为$(1,3)$或$(9,3)$或$(-4,3)$或$(4,3)。$
解:(1)连接$OD。$因为直线$CD$与$\odot O$相切,所以$OD\perp CD,$所以$\angle ODC = 90^{\circ}。$
因为四边形$ABCD$为平行四边形,所以$AB// CD,$所以$\angle AOD=\angle ODC = 90^{\circ}。$
因为$OA = OD,$所以$\angle A=\angle ODA=\frac{1}{2}(180^{\circ}-\angle AOD)=45^{\circ}。$
(2)如图①,连接$OD,$过点$D$作$DM\perp OA$于点$M,$过点$O$作$ON\perp CD$于点$N,$则$\angle OMD=\angle AMD=\angle OND = 90^{\circ},$$DN=\frac{1}{2}DH。$
设$OM = x。$因为$\odot O$的半径为5,所以$OA = OD = 5,$所以$AM = OA - OM = 5 - x。$
因为$AM^{2}+DM^{2}=AD^{2},$$OM^{2}+DM^{2}=OD^{2},$所以$AD^{2}-AM^{2}=OD^{2}-OM^{2}。$
因为$AD = 6,$所以$6^{2}-(5 - x)^{2}=5^{2}-x^{2},$
$36-(25 - 10x + x^{2})=25 - x^{2},$
$36 - 25 + 10x - x^{2}=25 - x^{2},$
$10x = 25 + 25 - 36,$
$10x = 14,$
解得$x = 1.4,$即$OM = 1.4。$
因为四边形$ABCD$为平行四边形,所以$CD = AB = 2OA = 10,$$AB// CD,$所以$\angle CDM=\angle AMD = 90^{\circ},$所以四边形$OMDN$为矩形,所以$DN = OM = 1.4,$所以$DH = 2DN = 2.8,$所以$CH = CD - DH = 7.2。$
(3)分类讨论如下:
①如图②,当点$D$在点$E$左侧时,连接$OD,$过点$O$作$OF\perp CD$于点$F,$过点$D$作$DG\perp AB$于点$G,$则$\angle AGD=\angle OGD = 90^{\circ},$$DF=\frac{1}{2}DE,$四边形$OFDG$为矩形,所以$OG = DF。$
因为$DE = 6,$所以$OG = DF = 3。$因为$OA = OD = 5,$所以$AG = OA - OG = 2,$$DG=\sqrt{OD^{2}-OG^{2}} = 4,$所以$AD=\sqrt{AG^{2}+DG^{2}} = 2\sqrt{5};$
②如图③,当点$D$在点$E$右侧时,连接$OD,$过点$O$作$OQ\perp CE$于点$Q,$过点$D$作$DP\perp AB$于点$P,$则$DQ=\frac{1}{2}DE = 3,$$\angle APD = 90^{\circ},$四边形$DPOQ$为矩形,所以$OP = DQ = 3,$所以$AP = OA + OP = 8,$$PD=\sqrt{OD^{2}-OP^{2}} = 4,$所以$AD=\sqrt{AP^{2}+PD^{2}} = 4\sqrt{5}。$
综上所述,$AD$的长为$2\sqrt{5}$或$4\sqrt{5}。$