电子课本网 第35页

第35页

信息发布者:
$解:(1)连接OE,过点O作OM\perp AE于点M$
$则AM=\frac{1}{2}AE,\angle OMA = 90^{\circ}$
$因为DF\perp AC,所以\angle DFC = 90^{\circ}$
$因为\angle CDF = 15^{\circ},所以\angle C=90^{\circ}-\angle CDF = 75^{\circ}$
$因为AB = AC,所以\angle ABC=\angle C = 75^{\circ}$
$所以\angle BAC=180^{\circ}-\angle ABC-\angle C = 30^{\circ}$
$所以\angle BOE = 2\angle BAC = 60^{\circ}$
$所以\angle AOE=180^{\circ}-\angle BOE = 120^{\circ}$
$因为\odot O的半径为3,所以OA = 3,所以OM=\frac{1}{2}OA=\frac{3}{2}$
$所以AM=\sqrt{OA^{2}-OM^{2}}=\sqrt{9-\frac{9}{4}}=\frac{3\sqrt{3}}{2}$
$所以AE = 2AM = 3\sqrt{3}$
$因为S_{扇形OAE}=\frac{120\pi\times3^{2}}{360}=3\pi$
$S_{\triangle OAE}=\frac{1}{2}AE\cdot OM=\frac{1}{2}\times3\sqrt{3}\times\frac{3}{2}=\frac{9\sqrt{3}}{4}$
$所以S_{阴影}=S_{扇形OAE}-S_{\triangle OAE}=3\pi-\frac{9\sqrt{3}}{4}$
$故阴影部分的面积为3\pi-\frac{9\sqrt{3}}{4}$
$(2)连接BE。因为AB为\odot O的直径,所以\angle AEB = 90^{\circ},所以BE\perp AC$
$因为DF\perp AC,所以BE// DF,所以\angle CBE=\angle CDF$
$因为\angle CBE=\angle CAD,所以\angle CDF=\angle CAD$
$因为四边形ABDE内接于\odot O,所以\angle AED+\angle ABC = 180^{\circ}$
$因为\angle AED+\angle DEC = 180^{\circ},所以\angle DEC=\angle ABC$
$因为\angle ABC=\angle C,所以\angle DEC=\angle C$
$所以DE = DC,所以\angle CDF=\angle EDF,所以\angle CAD=\angle EDF。$
$解:(1)\triangle BDE是等腰直角三角形。证明如下:\ $
$因为AB是\odot O的直径,所以\angle ACB=\angle ADB = 90^{\circ}$
$因为AE,BE分别平分\angle BAC和\angle ABC$
$所以\angle BAE=\frac{1}{2}\angle BAC,\angle ABE=\frac{1}{2}\angle ABC$
$所以\angle BED=\angle BAE+\angle ABE=\frac{1}{2}(\angle BAC+\angle ABC)=\frac{1}{2}(180^{\circ}-\angle ACB)=45^{\circ}$
$所以\angle DBE=90^{\circ}-\angle BED = 45^{\circ},所以\angle BED=\angle DBE$
$所以BD = DE,所以\triangle BDE是等腰直角三角形$
$(2)连接OC,OD,CD,设OD交BC于点F$
$因为AE平分\angle BAC,所以\angle BAD=\angle CAD$
$所以\overset{\frown}{BD}=\overset{\frown}{CD},所以BD = CD$
$又OB = OC,所以OD垂直平分BC,所以\angle OFB=\angle DFB = 90^{\circ},BF=\frac{1}{2}BC$
$因为\angle ADB = 90^{\circ},BD = DE$
$所以BE=\sqrt{BD^{2}+DE^{2}}=\sqrt{2}BD$
$又BE = 2\sqrt{10},所以BD = 2\sqrt{5}$
$因为AB = 10,所以OB = OD=\frac{1}{2}AB = 5$
$设OF = x,则DF = OD - OF = 5 - x$
$因为BF^{2}+OF^{2}=OB^{2},BF^{2}+DF^{2}=BD^{2}$
$所以OB^{2}-OF^{2}=BD^{2}-DF^{2},\ 即5^{2}-x^{2}=(2\sqrt{5})^{2}-(5 - x)^{2},解得x = 3,所以OF = 3$
$所以BF=\sqrt{OB^{2}-OF^{2}}=\sqrt{25 - 9}=4,所以BC = 2BF = 8$