(1)证明:过点$A$作$AM\perp BC$于点$M,$则$\angle AMB=\angle AMC = 90^{\circ}。$
在$Rt\triangle AMB$中,$AM^{2}+BM^{2}=AB^{2};$在$Rt\triangle AMC$中,$AM^{2}+CM^{2}=AC^{2};$在$Rt\triangle AMD$中,$AM^{2}+DM^{2}=AD^{2}。$
因为$AD$是$\triangle ABC$的中线,所以$BD = CD。$
$AB^{2}+AC^{2}=2AM^{2}+BM^{2}+CM^{2}=2AM^{2}+(BD + DM)^{2}+(CD - DM)^{2}=2AM^{2}+(BD + DM)^{2}+(BD - DM)^{2}=2(AM^{2}+BD^{2}+DM^{2})=2(AD^{2}+BD^{2})。$
(2)解:如图,取$OP$的中点$H,$连接$OC,$$OD,$$OE,$$EH。$
因为$AB = 8,$所以$OB = OC = OD=\frac{1}{2}AB = 4。$
因为$P$是$OB$的中点,所以$OP = BP=\frac{1}{2}OB = 2,$所以$OH=\frac{1}{2}OP = 1。$
因为$E$是$CD$的中点,$\angle CPD = 90^{\circ},$所以$PE = CE=\frac{1}{2}CD。$
在$\triangle OEP$中,由中线长公式,得$OE^{2}+PE^{2}=2(EH^{2}+OH^{2})=2(EH^{2}+1)。$
在$\triangle OCD$中,由中线长公式,得$OC^{2}+OD^{2}=2(OE^{2}+CE^{2})=2(OE^{2}+PE^{2}),$所以$OE^{2}+PE^{2}=\frac{1}{2}(OC^{2}+OD^{2})=\frac{1}{2}(4^{2}+4^{2}) = 16。$
所以$2(EH^{2}+1)=16,$$EH^{2}+1 = 8,$$EH=\sqrt{7},$所以点$E$在以点$H$为圆心,$\sqrt{7}$为半径的圆上运动。
结合图形可知,当$EH\perp AB$时,$\triangle EPB$的面积最大,此时$\angle OHE = 90^{\circ}。$
所以$OE=\sqrt{OH^{2}+EH^{2}}=\sqrt{1^{2}+(\sqrt{7})^{2}} = 2\sqrt{2}。$
因为$OC = OD,$所以$OE\perp CD,$所以$\angle OEC = 90^{\circ}。$
所以$CE=\sqrt{OC^{2}-OE^{2}}=\sqrt{4^{2}-(2\sqrt{2})^{2}} = 2\sqrt{2},$所以$CD = 2CE = 4\sqrt{2}。$
故当$\triangle EPB$的面积最大时,$CD$的长为$4\sqrt{2}。$