电子课本网 第27页

第27页

信息发布者:
$\sqrt{2}$
2046
$5 - \frac{3\pi}{4}$
-2025
$2\sqrt{2}$
$\frac{\sqrt{2}}{2} \leq OP \leq \frac{\sqrt{3}}{2}$
解:(1)设该商场投入资金的月平均增长率为$x.$ 由题意,得$20(1 + x)^2 = 24.2,$
即$(1 + x)^2 = 1.21,$
则$1 + x = \pm1.1,$
解得$x_1 = 0.1 = 10\%,$$x_2 = - 2.1$(不合题意,舍去).
故该商场投入资金的月平均增长率为$10\%.$
(2)由题意,得$24.2×(1 + 10\%) = 24.2×1.1 = 26.62$(万元).
故预计该商场七月份投入资金将达到$26.62$万元.
(1)证明:因为$C$为$\overset{\frown}{AB}$的中点,所以$\overset{\frown}{AC} = \overset{\frown}{BC},$所以$\angle AOC = \angle BOC.$
因为$OA = OB,$所以$OC \perp AB.$
因为$CD// AB,$所以$OC \perp CD.$
因为$OC$是$\odot O$的半径,所以$CD$是$\odot O$的切线.
(2)解:因为$OC \perp CD,$所以$\angle OCD = 90^{\circ}.$
因为$OB = OC = OA = 3,$$BD = 2,$所以$OD = OB + BD = 5,$
根据勾股定理$CD = \sqrt{OD^{2} - OC^{2}} = \sqrt{5^{2} - 3^{2}} = 4,$
所以$S_{\triangle OCD} = \frac{1}{2}CD\cdot OC = \frac{1}{2}×4×3 = 6.$
故$\triangle OCD$的面积为$6.$