电子课本网 第32页

第32页

信息发布者:
$(2\pi - 2\sqrt{3})$
A
$4\sqrt{2}$
$5$
解: 设该圆锥的侧面展开图的圆心角度数为$n^{\circ}.$
由题意,得$\pi\times8\times20=\frac{n\pi\times20^{2}}{360},$
$160\pi=\frac{n\pi\times400}{360},$
$160\times360 = 400n,$
$n = 144.$
因为$S_{侧}=\pi\times8\times20 = 160\pi(\text{cm}^{2}),$$S_{底}=\pi\times8^{2}=64\pi(\text{cm}^{2}),$所以$S_{表}=S_{侧}+S_{底}=160\pi + 64\pi=224\pi\text{ cm}^{2}.$
故该圆锥的侧面展开图的圆心角度数为$144^{\circ},$表面积为$224\pi\text{ cm}^{2}.$
解: (1) 直线$CD$与$\odot B$相切. 理由如下:
过点$B$作$BF\perp CD,$垂足为$F,$则$\angle BFD = 90^{\circ}.$
因为$AD// BC,$所以$\angle ADB = \angle CBD.$
因为$BC = CD,$所以$\angle CBD = \angle FDB,$所以$\angle ADB = \angle FDB.$
在$\triangle ABD$和$\triangle FBD$中,$\begin{cases}\angle BAD=\angle BFD\\\angle ADB=\angle FDB\\BD = BD\end{cases},$所以$\triangle ABD\cong\triangle FBD,$所以$BA = BF,$所以点$F$在$\odot B$上,即$BF$为$\odot B$的半径,所以直线$CD$与$\odot B$相切.
(2) 因为$\angle BCD = 60^{\circ},$$BC = CD,$所以$\triangle BCD$是等边三角形,所以$\angle CBD = 60^{\circ}.$
因为$AD// BC,$$\angle BAD = 90^{\circ},$所以$\angle ABC = 180^{\circ}-\angle BAD = 90^{\circ},$所以$\angle ABD=\angle ABC - \angle CBD = 30^{\circ}.$
因为$AB = 2\sqrt{3},$易得$AD = 2,$所以$S_{阴影}=S_{\triangle ABD}-S_{扇形BAE}=\frac{1}{2}\times2\sqrt{3}\times2-\frac{30\pi\times(2\sqrt{3})^{2}}{360}=2\sqrt{3}-\pi.$