电子课本网 第11页

第11页

信息发布者:
$0.8$
$4$
$\triangle AOD\cong\triangle AOE,$$\triangle DOC\cong\triangle EOB,$$\triangle AOC\cong\triangle AOB,$$\triangle ACE\cong\triangle ABD$
证明:∵​$AB// DE,$​∴​$∠CAB = ∠E$​
∵​$∠E = 40°,$​∴​$∠CAB = 40°$​
∵​$∠DAB = 70°,$​∴​$∠DAE = ∠DAB - ∠CAB = 30°$​
∵​$∠B = 30°,$​∴​$∠DAE = ∠B$​
在​$\triangle ADE$​和​$\triangle BCA$​中
​$\begin {cases}∠DAE = ∠B \\AE = BA \\∠E = ∠CAB\end {cases}$​
∴​$\triangle ADE\cong \triangle BCA(AS A),$​∴​$AD = BC$​
解:​$BC// DF,$​​$BC = DF,$​理由如下
∵​$∠ABC + ∠CBD = 180°,$​​$∠EDF + ∠F DB = 180°,$​​$∠ABC = ∠EDF$​
∴​$∠CBD = ∠F DB,$​∴​$BC//DF$​
∵​$AD = BE,$​∴​$AD - BD = BE - BD,$​即​$AB = ED$​
∵​$AC// EF,$​∴​$∠A = ∠E$​
在​$\triangle ABC$​和​$\triangle EDF {中}$​
​$\begin {cases}∠A = ∠E \\AB = ED \\∠ABC = ∠EDF\end {cases}$​
∴​$\triangle ABC\cong \triangle EDF(AS A)$​
∴​$BC = DF$​
解:∵​$BE\perp CE,$​​$AD\perp CE,$​∴​$∠E = ∠ADC = 90°$​
∴​$∠EBC + ∠BCE = 90°,$​​$∠CAD + ∠DCA = 90°$​
∵​$∠ACB = ∠BCE + ∠DCA = 90°$​
∴​$∠EBC = ∠DCA,$​​$∠BCE = ∠CAD$​
​$ $​在​$\triangle CEB$​和​$\triangle ADC$​中
​$ \begin {cases}∠EBC = ∠DCA \\BC = CA \\∠BCE = ∠CAD\end {cases}$​
∴​$\triangle CEB≌\triangle ADC(AS A)$​
∴​$BE = CD,$​​$CE = AD$​
∵​$BE = 1,$​​$AD = 3,$​∴​$CD = 1,$​​$CE = 3$​
∴​$DE = CE - CD = 3 - 1 = 2$​