解:∵$BE\perp CE,$$AD\perp CE,$∴$∠E = ∠ADC = 90°$
∴$∠EBC + ∠BCE = 90°,$$∠CAD + ∠DCA = 90°$
∵$∠ACB = ∠BCE + ∠DCA = 90°$
∴$∠EBC = ∠DCA,$$∠BCE = ∠CAD$
$ $在$\triangle CEB$和$\triangle ADC$中
$ \begin {cases}∠EBC = ∠DCA \\BC = CA \\∠BCE = ∠CAD\end {cases}$
∴$\triangle CEB≌\triangle ADC(AS A)$
∴$BE = CD,$$CE = AD$
∵$BE = 1,$$AD = 3,$∴$CD = 1,$$CE = 3$
∴$DE = CE - CD = 3 - 1 = 2$