$ (1)$证明:∵$AD = BE$
∴$AD + BD = BE + BD,$即$AB = DE$
$ $在$\triangle ABC$和$\triangle DEF $中
$ \begin {cases}AB = DE \\AC = DF \\BC = EF\end {cases}$
∴$\triangle ABC≌\triangle DEF(\mathrm {SSS})$
$ (2)$解:∵$\triangle ABC≌\triangle DEF,$$∠A = 55°$
∴$∠A = ∠F DE = 55°$
∵$\triangle DEF $的内角和为$180°,$$∠E = 45°$
∴$∠F = 180° - (∠F DE + ∠E)=180° - (55° + 45°) = 80°$