$ (1)$证明:∵$AG\perp EF,$$CH\perp EF,$∴$∠G=∠H = 90°$
∵$AD// BC,$∴$∠DEF=∠CFH$
∵$∠AEG=∠DEF,$∴$∠AEG=∠CFH$
$ $在$\triangle AGE$和$\triangle CHF $中
$ \begin {cases}∠G=∠H \\∠AEG=∠CFH \\AE = CF\end {cases}$
∴$\triangle AGE≌\triangle CHF(\mathrm {AAS})$
$ (2)$解:线段$GH$与$AC$互相平分
理由:设$GH,$$AC$交于点$O$
$ $由$(1),$得$\triangle AGE≌\triangle CHF,$∴$AG = CH$
$ $在$\triangle AGO$和$\triangle CHO$中
$ \begin {cases}∠AOG=∠COH \\∠G=∠H \\AG = CH\end {cases}$
∴$\triangle AGO≌\triangle CHO(\mathrm {AAS})$
∴$AO = CO,$$GO = HO,$即线段$GH$与$AC$互相平分