$(1)$证明:∵$∠D = 90°,$$BE\perp AC,$∴$∠AFE = ∠D = 90°$
∵$EA$平分$∠DEF,$∴$∠FEA = ∠DEA$
在$\triangle F AE$和$\triangle DAE$中
$\begin {cases}∠AFE = ∠D = 90° \\∠FEA = ∠DEA \\EA = EA\end {cases}$
∴$\triangle F AE≌\triangle DAE(\mathrm {AAS}),$∴$AF = AD$
$(2)$解:∵$∠D = 90°,$$BE\perp AC,$∴$∠AF B = ∠D = 90°$
∴$\triangle ABF $和$\triangle ACD$均为直角三角形
在$Rt\triangle ABF $和$Rt\triangle ACD$中
$\begin {cases}AB = AC \\AF = AD\end {cases}$
∴$Rt\triangle ABF≌Rt\triangle ACD(\mathrm {HL}),$∴$BF = CD = 7$
∵$DE = 3,$∴$CE = CD - DE = 7 - 3 = 4$