电子课本网 第21页

第21页

信息发布者:
证明:​$(1)$​∵​$AD = BC,$​∴​$AD + CD = BC + CD,$​即​$AC = BD$​
在​$\triangle ACE$​和​$\triangle BDF $​中
​$\begin {cases}AC = BD \\AE = BF \\CE = DF\end {cases}$​
∴​$\triangle ACE≌\triangle BDF(\mathrm {SSS})$​
∴​$∠A = ∠B,$​∴​$AE// BF$​
​$(2)$​由​$(1),$​知​$∠A = ∠B$​
在​$\triangle ADE$​和​$\triangle BCF $​中
​$\begin {cases}AE = BF \\∠A = ∠B \\AD = BC\end {cases}$​
∴​$\triangle ADE≌\triangle BCF(S AS),$​∴​$DE = CF$​
证明:∵​$AC$​既平分​$∠DAB,$​又平分​$∠DCB$​
∴​$∠DAC = ∠BAC,$​​$∠DCA = ∠BCA$​
在​$\triangle ACD$​和​$\triangle ACB$​中
​$\begin {cases}∠DAC = ∠BAC \\AC = AC \\∠DCA = ∠BCA\end {cases}$​
∴​$\triangle ACD≌\triangle ACB(AS A),$​∴​$AD = AB$​
在​$\triangle AED$​和​$\triangle AEB$​中
​$\begin {cases}AD = AB \\∠DAE = ∠BAE \\AE = AE\end {cases}$​
∴​$\triangle AED≌\triangle AEB(S AS),$​∴​$DE = BE$​
​$(1)$​证明:∵​$∠D = 90°,$​​$BE\perp AC,$​∴​$∠AFE = ∠D = 90°$​
∵​$EA$​平分​$∠DEF,$​∴​$∠FEA = ∠DEA$​
在​$\triangle F AE$​和​$\triangle DAE$​中
​$\begin {cases}∠AFE = ∠D = 90° \\∠FEA = ∠DEA \\EA = EA\end {cases}$​
∴​$\triangle F AE≌\triangle DAE(\mathrm {AAS}),$​∴​$AF = AD$​
​$(2)$​解:∵​$∠D = 90°,$​​$BE\perp AC,$​∴​$∠AF B = ∠D = 90°$​
∴​$\triangle ABF $​和​$\triangle ACD$​均为直角三角形
在​$Rt\triangle ABF $​和​$Rt\triangle ACD$​中
​$\begin {cases}AB = AC \\AF = AD\end {cases}$​
∴​$Rt\triangle ABF≌Rt\triangle ACD(\mathrm {HL}),$​∴​$BF = CD = 7$​
∵​$DE = 3,$​∴​$CE = CD - DE = 7 - 3 = 4$​