证明:$(1)$∵$D$为$BC$的中点,∴$BD = CD$
∵$BE//AC,$∴$∠EBD = ∠C,$$∠E = ∠CAD$
在$∆BDE$和$∆CDA$中
$\begin {cases}∠EBD=∠C \\∠E=∠CAD \\BD = CD\end {cases}$
∴$∆BDE≌∆CDA(\mathrm {AAS})$
$(2)$∵$D$为$BC$的中点,$AD⊥BC$
∴直线$AD$为线段$BC$的垂直平分线,∴$BA = CA$
由$(1),$得$∆BDE≌∆CDA,$∴$BE = CA,$∴$BA = BE$